an=n*(n+1)*(n+2)分之一 求sn=a1+a2+a3+a4+a5+…………+an为多少?求详解.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 07:33:13
an=n*(n+1)*(n+2)分之一 求sn=a1+a2+a3+a4+a5+…………+an为多少?求详解.
a‹n›=1/[n(n+1)(n+2)]
=(1/2)[1/n(n+1)-1/(n+1)(n+2)]
=(1/2){[1/n-1/(n+1)]-[1/(n+1)-1/(n+2)]}
故S‹n›=(1/2){[(1-1/2)-(1/2-1/3)]+[(1/2-1/3)-(1/3-1/4)]+[(1/3-1/4)-(1/4-1/5)]+[(1/4-1/5)-(1/5-1/6)]
+.+[(1/n-1/(n+1))-(1/(n+1)-1/(n+2))]}
=(1/2){(1/2-1/6)+(1/6-1/12)+(1/12-1/20)+(1/20-1/30)+.+[1/n(n+1)-1/(n+1)(n+2)]}
=(1/2)[1/2-1/(n+1)(n+2)]
=(1/2)[1/n(n+1)-1/(n+1)(n+2)]
=(1/2){[1/n-1/(n+1)]-[1/(n+1)-1/(n+2)]}
故S‹n›=(1/2){[(1-1/2)-(1/2-1/3)]+[(1/2-1/3)-(1/3-1/4)]+[(1/3-1/4)-(1/4-1/5)]+[(1/4-1/5)-(1/5-1/6)]
+.+[(1/n-1/(n+1))-(1/(n+1)-1/(n+2))]}
=(1/2){(1/2-1/6)+(1/6-1/12)+(1/12-1/20)+(1/20-1/30)+.+[1/n(n+1)-1/(n+1)(n+2)]}
=(1/2)[1/2-1/(n+1)(n+2)]
an=n*(n+1)*(n+2)分之一 求sn=a1+a2+a3+a4+a5+…………+an为多少?求详解.
已经数列{an}.a1+a2+a3+…+an=2n^2-3n+1.求a4+a5+…+a10
数列an前n项和为sn=2n^2+3n,若将此数列按如下规律编组,(a1),(a2,a3),(a4,a5,a6)……,求
已知数列{an}首项为a1=2,且a(n+1)=(1/2)(a1+a2+a3+a4+a5…+an)(n属于N*)记Sn为
已知a1=x,an+1=1-1/an,n=1,2,3,…… 1、求a2,a3,a4,a5 2、求a2006
已知a1=x,an+1=1-1/an(n=1,2,3,…)求a2,a3,a4,a5:;求a2002
已知a1=x,an+1=1-1/an(n=1,2,3,…)求a2,a3,a4,a5;求a2002
已知数列{an}的首项a1=1/2,前n项和sn=n^2*an 求a2,a3,a4,a5?
在一列数 a1,a2,a3,a4,a5……其中a1=1/2 an=(1+an-1)分之1(n为不小于2的整数),求a4
已知数列{an}:a1=1,当n大于等于2时,a1*a2*a3*…*an=n^2,求a3+a5的值
a1=x,a 的n+1=1-an分之一(n=1,2,3,.)求a2,a3,a4,a5,.求a2002求a2000+a20
数列an的前n项和为Sn,且a1=1,a(n+1)=1/3Sn,n=1,2,3,…,求 (1)a2,a3,a4,的值及数