设数列an为等差数列,数列bn为等比数列若a1
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 03:56:59
设数列an为等差数列,数列bn为等比数列若a1
a(n) = a + (n-1)d,
a = a(1) < a(2) = a + d,d>0.
b(n) = bq^(n-1) = [a(n)]^2 >=0.
b = b(1) < b(2) = bq,b>0,q>1.
b = b(1) = [a(1)]^2 = a^2,
b(n) = a^2q^(n-1).
b(2) = a^2q = [a(2)]^2 = [a+d]^2,q = [1 + d/a]^2.
b(n) = a^2[1+d/a]^(2n-2)
b(3) = a^2[1+d/a]^4 = [a(3)]^2 = [a+2d]^2,
[1+d/a]^4 = [1+2d/a]^2,
0 = [(1+d/a)^2 - (1+2d/a)][(1+d/a)^2 + (1+2d/a)]
= [1 + 2d/a + (d/a)^2 - 1 - 2d/a][1+2d/a + (d/a)^2 + 1 + 2d/a]
= (d/a)^2[(d/a)^2 +4d/a + 2],
0 = (d/a)^2 + 4(d/a) + 4 - 2 = [d/a+2]^2 - 2 = [d/a+2+2^(1/2)][d/a+2-2^(1/2)],
0 = d/a + 2 + 2^(1/2)或0 = d/a + 2-2^(1/2).
q = [1+d/a]^2 = [1+2^(1/2)]^2 = 3 + 2^(3/2),
或
q = [1+d/a]^2 = [1-2^(1/2)]^2 = 3 - 2^(3/2)
a = a(1) < a(2) = a + d,d>0.
b(n) = bq^(n-1) = [a(n)]^2 >=0.
b = b(1) < b(2) = bq,b>0,q>1.
b = b(1) = [a(1)]^2 = a^2,
b(n) = a^2q^(n-1).
b(2) = a^2q = [a(2)]^2 = [a+d]^2,q = [1 + d/a]^2.
b(n) = a^2[1+d/a]^(2n-2)
b(3) = a^2[1+d/a]^4 = [a(3)]^2 = [a+2d]^2,
[1+d/a]^4 = [1+2d/a]^2,
0 = [(1+d/a)^2 - (1+2d/a)][(1+d/a)^2 + (1+2d/a)]
= [1 + 2d/a + (d/a)^2 - 1 - 2d/a][1+2d/a + (d/a)^2 + 1 + 2d/a]
= (d/a)^2[(d/a)^2 +4d/a + 2],
0 = (d/a)^2 + 4(d/a) + 4 - 2 = [d/a+2]^2 - 2 = [d/a+2+2^(1/2)][d/a+2-2^(1/2)],
0 = d/a + 2 + 2^(1/2)或0 = d/a + 2-2^(1/2).
q = [1+d/a]^2 = [1+2^(1/2)]^2 = 3 + 2^(3/2),
或
q = [1+d/a]^2 = [1-2^(1/2)]^2 = 3 - 2^(3/2)
设数列an为等差数列,数列bn为等比数列若a1
设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,
设等差数列{an}的公差d≠0,数列{bn}为等比数列,若a1=b1,b2=a3 b3=a2,则bn的公比为
等差数列{an}的公差为-2,且a1,a3,a4成等比数列.设bn=2/n(12-an)(n∈N*),求数列{bn}的前
设等差数列{an}的公差d≠0,数列{bn}为等比数列,若a1=b1=a,a3=b3,a7=b5
设数列an是等差数列,bn为等比数列,若a1=b1=1,a2+a4=b3,b2×b4=a3,求数列an,bn的通项公式
数列{an}是首项为0的等差数列,数列{bn}是首项为1的等比数列,设cn=an+bn,数列{cn}的前三项依次为1,1
若数列{an},则有数列bn=a1+a2+a3+**an/n也为等差数列,数列{an}是等比数列,且cn>0,则有dn=
已知数列an是等差数列,a1+a2+a3=15,数列bn为等比数列,b1b2b3=27.
数列{an}为等差数列,an为正整数,其前n项和为Sn,数列{bn}为等比数列,且a1=3,b1=1,数列{b
已知数列{an}为等差数列,且a1=2,a1+a2+a3=12,令bn=3^an,求证,数列{bn}是等比数列
已知数列{an}为等差数列,且a1=1.{bn}为等比数列,数列{an+bn}的前三项依次为3,7,13.求