已知圆x^2+y^2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP垂直于OQ(0为坐标原点),求该圆的圆
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 22:41:11
已知圆x^2+y^2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP垂直于OQ(0为坐标原点),求该圆的圆心坐标及半径长
----------------------------------------------------------------
----------------------------------------------------------------
(-1/2,3),r=5/2
将圆方程化简为标准式有:
[x+(1/2)]^2+(y-3)^2=(37-4m)/4……………………………(1)
所以,圆心坐标为(-1/2,3)
联立直线与圆方程得到:
x^2+x+y^2-6y+m=0
x+2y-3=0
===> (2y-3)^2-(2y-3)+y^2-6y+m=0
===> 4y^2-12y+9-2y+3+y^2-6y+m=0
===> 5y^2-20y+(m+12)=0
===> y1+y2=4,y1y2=(m+12)/5
===> x1x2=(-2y1+3)(-2y2+3)=4y1y2-6(y1+y2)+9=4(m+12)/5-15
已知OP⊥OQ
则,Kop*Koq=-1
即:(y1/x1)*(y2/x2)=-1
===> y1y2+x1x2=0
===> (m+12)/5+4(m+12)/5-15=0
===> m+12-15=0
===> m=3
代入(2)式就有:
r^2=(37-4m)/4=25/4
所以,r=√(25/4)=5/2
将圆方程化简为标准式有:
[x+(1/2)]^2+(y-3)^2=(37-4m)/4……………………………(1)
所以,圆心坐标为(-1/2,3)
联立直线与圆方程得到:
x^2+x+y^2-6y+m=0
x+2y-3=0
===> (2y-3)^2-(2y-3)+y^2-6y+m=0
===> 4y^2-12y+9-2y+3+y^2-6y+m=0
===> 5y^2-20y+(m+12)=0
===> y1+y2=4,y1y2=(m+12)/5
===> x1x2=(-2y1+3)(-2y2+3)=4y1y2-6(y1+y2)+9=4(m+12)/5-15
已知OP⊥OQ
则,Kop*Koq=-1
即:(y1/x1)*(y2/x2)=-1
===> y1y2+x1x2=0
===> (m+12)/5+4(m+12)/5-15=0
===> m+12-15=0
===> m=3
代入(2)式就有:
r^2=(37-4m)/4=25/4
所以,r=√(25/4)=5/2
已知圆x^2+y^2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP垂直于OQ(0为坐标原点),求该圆的圆
已知圆C:x^2+y^2+x-6y+m=0和直线x+2y-3=0交于P\Q两点,且OP垂直OQ(O为坐标原点),求该圆的
已知圆x^2+y^2+x-6y+m=0和直线x+2y-3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐
已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的坐标及半径
已知圆X^2+Y^2+X-6Y+M=0和直线X+2Y-3=0交于P.Q两点,且向量OP·OQ=0(O为坐标原点,求该圆的
已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求m
已知圆x²+y²+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点)
已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP垂直OQ(O为圆心).求圆心坐标和半径……
已知圆x^2+y^2+x-6y+m=0与直线x+2y-3=0相交于P、Q两点,O为坐标原点,若OP垂直于OQ,试求m的值
已知圆x^2+y^2+x-6y+m=0和直线x+2y-3=0交于P,Q两点且OP垂直于OQ,求圆心及坐标
已知圆x²+y²+x-6y+m=0,和直线x+2y-3=0交于p,Q两点,且op⊥oQ(o为坐标原点
已知圆x²+y²+x-6y+m=0和直线x+2y-3=0交于P、Q两点,且OP⊥OQ(O为原点),求