作业帮 > 数学 > 作业

已知圆c的圆心在直线x-y-4=0上,并且通过两圆c1:x^2 y^2-4x-3=0和c2:x^2 y^2-4y-3=0

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 20:38:23
已知圆c的圆心在直线x-y-4=0上,并且通过两圆c1:x^2 y^2-4x-3=0和c2:x^2 y^2-4y-3=0的交点,求圆c的方程?
C1:x^2+y^2-4x-3=0
C2:x^2+y^2-4y-3=0
两式相减
得交点弦:x=yx=y代入x^2+y^2-4x-3=0
解得x=(2±√10)/2
则y=x=(2±√10)/2
交点弦中点坐标(1,1)
交点弦中垂线过圆心C
中垂线:y-1=-1(x-1) x+y-2=0
与x-y-4=0交点C(3,-1)
半径√([(2+√10)/2-3]^2+[(2+√10)/2+1]^2)=√13
C:(x-3)^2+(y+1)^2=13