试从dx/dy=1/y'导出:d^2x/dy^2=-y''/(y')^3 为什么不直接对y求导,而要转为dx的方法呢?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 07:39:30
试从dx/dy=1/y'导出:d^2x/dy^2=-y''/(y')^3 为什么不直接对y求导,而要转为dx的方法呢?
这里是视x=g(y),x是因变量,y是自变量,来求函数x关于自变量y的二阶导数.
已知条件dx/dy=1/y'是函数x=g(y)与它的反函数y=f(x)的导数关系,题目的意思是从这个条件出发,来求函数x关于自变量y的二阶导数.
解决此题的关键是,注意是对哪一个变量求导;要用到复合函数的求导方法.
具体解答如下:
d^2x/dy^2
=d[dx/dy]/dy(对一阶导数再求一次导数)
=d[1/y']/dy(代入条件)
={d[1/y']/dx}*[dx/dy](因为1/y'中的y'是函数y=f(x)的导数,是x的函数,所以1/y'当然也是x的函数,这个x的函数现在要对y求导,则需用复合函数的求导方法,对1/y'先对x求导,再对y求导)
={[-1/y'^2]*y''}*[dx/dy](这里{[-1/y'^2]*y''}的得到又一次用了复合函数的求导方法:对[1/y']先对y'求导,y'再对x求导)
={[-1/y'^2]*y''}*[1/y'](代入条件)
=-y''/(y')^3.
已知条件dx/dy=1/y'是函数x=g(y)与它的反函数y=f(x)的导数关系,题目的意思是从这个条件出发,来求函数x关于自变量y的二阶导数.
解决此题的关键是,注意是对哪一个变量求导;要用到复合函数的求导方法.
具体解答如下:
d^2x/dy^2
=d[dx/dy]/dy(对一阶导数再求一次导数)
=d[1/y']/dy(代入条件)
={d[1/y']/dx}*[dx/dy](因为1/y'中的y'是函数y=f(x)的导数,是x的函数,所以1/y'当然也是x的函数,这个x的函数现在要对y求导,则需用复合函数的求导方法,对1/y'先对x求导,再对y求导)
={[-1/y'^2]*y''}*[dx/dy](这里{[-1/y'^2]*y''}的得到又一次用了复合函数的求导方法:对[1/y']先对y'求导,y'再对x求导)
={[-1/y'^2]*y''}*[1/y'](代入条件)
=-y''/(y')^3.
试从dx/dy=1/y'导出:d^2x/dy^2=-y''/(y')^3 为什么不直接对y求导,而要转为dx的方法呢?
从(dx)/(dy)=1/y '导出:(d^2x)/(dy^2)=-y''/(y')^3
试从dx/dy=1/y'导出:d^2x/dy^2=-y''/(y')^3 题目中关于d[1/y']/dx}*[dx/dy
试从dx/dy=1/y'导出:d^3x/dy^3=3(y'')^2﹣y'y'''/(y')5
试从dx/dy=1/y'导出:d^2x/dy^2=-y''/(y')^3.d^2x/dy^
dx/dy=1/y',求d^2x/dy^2 .为什么d^2x/dy^2不等于dx/dy求导?一个是二阶导数,一个是一阶导
d^2y/dx^2=(dy/dx)'×(dy/dx),另外请解释下dx,dy的含义,dx和dy是指x=...和y=...
(x^2)dy+(y^2)dx=dx-dy
高阶导数已知dx/dy=1/y' 导出d2x/dy2= -y''/(y’)3 如果左右同时求导,即可,但是球的是X对于Y
y=lnsin^2x 求导 Dy/Dx
隐函数求道的方法为什么 e^y+xy-e=0 怎么导出 d/dx(e^y+xy-e)=e^y dy/dx+y+x dy/
请教数学高手(d/dx)X^2+(d/dx)Y^2=0怎么推出2X+2Y(dy/dx)=0,是对X求导吗?