如图,四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底面边长均为2a,且∠A1AD=∠A1AB=60°,
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:37:35
如图,四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底面边长均为2a,且∠A1AD=∠A1AB=60°,则侧棱AA1和截面B1D1DB的距离是______.
由题意知平面B1D1DB垂直于A1ACC1
连A1D,A1B,A1C1,AC
设A1C1交B1D1于O1点
AC交BD于O点
∵ABCD为正方形
∴BD=A1C1=2
2a
∴A1O1=
2a
又∠A1AD=∠A1AB=60,
∴A1D=A1B=2a
A1D2+A1B2=B1D12
则△A1BD为等腰直角三角形
则A1O=
2a=A1O1
在△AO1O中
A1O=A1O1=
2a
又OO1=2a
∴△AO1O为等腰直角三角形
∴A1到OO1的距离为a
即侧棱AA1和平面B1D1DB的距离是a
故答案为a.
连A1D,A1B,A1C1,AC
设A1C1交B1D1于O1点
AC交BD于O点
∵ABCD为正方形
∴BD=A1C1=2
2a
∴A1O1=
2a
又∠A1AD=∠A1AB=60,
∴A1D=A1B=2a
A1D2+A1B2=B1D12
则△A1BD为等腰直角三角形
则A1O=
2a=A1O1
在△AO1O中
A1O=A1O1=
2a
又OO1=2a
∴△AO1O为等腰直角三角形
∴A1到OO1的距离为a
即侧棱AA1和平面B1D1DB的距离是a
故答案为a.
如图,四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底面边长均为2a,且∠A1AD=∠A1AB=60°,
四棱柱ABCD-A1B1C1D1的底面ABCD为矩形,AB=1,AD=2,AA1=3,角A1AB=角A1AD=60度,求
如图,已知直四棱柱ABCD-A1B1C1D1的底面边长和侧棱长均为1,且满足∠BAD=60°,O1为A1C1的中点.
如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为a的菱形,且∠ABC=60°,侧棱长为22a,若经过AB
如图,四棱柱ABCD—A1B1C1D1,中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2
如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2. (Ⅰ)
如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2
(平面与平面性质)如图,四棱柱ABCD-A1B1C1D1中底面ABCD为正方形侧棱AA1⊥底面ABCD,E是棱BC的中点
已知ABCD-A1B1C1D1是底面为菱形的直四棱柱,P是棱DD1的中点,∠BAD=60°,底面边长为2,若PB与平面A
已知四棱柱ABCD—A1B1C1D1中,侧棱AA1⊥底面ABCD,且AA1=2,底面ABCD的边长均大于2,且∠DAB=
(2014•广州模拟)如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,A1A=AB,
已知平行六面体ABCD—A1B1C1D1的所有棱长都是1,且∠A1AB=∠A1AD=∠BAD=60°,E、F分别为A1B