已知数列前n项和Sn=n(a1+an)/2,如何证明该数列为等差数列
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 18:54:31
已知数列前n项和Sn=n(a1+an)/2,如何证明该数列为等差数列
已知数列前n项和Sn=n(a1+an)/2,如何证明该数列为等差数列
已知数列前n项和Sn=n(a1+an)/2,如何证明该数列为等差数列
第一种方法:
①an+1=Sn+1-Sn
②an=Sn-Sn_1(n≥2)①-②得
an+1-an=Sn+1+Sn_1-2Sn
=(n+1)(a1+an+1)/2+(n-1)(an+an_1)/2-n(a1+an)
=1/2[(n+1)an+1+(n-1)an_1-2nan]
可得2(an+1-an)=(n+1)an+1+(n-1)an_1-2nan(n≥2)
整理可得2(n-1)an=(n-1)an+1+(n-1)an_1(n≥2)
即2an=an+1+an_1(n≥2)
根据等差数列的特性可知:此数列为等差数列
第二种方法:
已知等差数列前n项的和为
Sn=na1+n(n-1)d/2(n≥1,d为等差)
=na1/2+[na1+n(n-1)d]/2
=na1/2+n[a1+(n-1)d]/2
=na1/2+nan/2
=n(a1+an)/2
即等差数列Sn=na1+n(n-1)d/2=n(a1+an)/2(n≥1,d为等差)
所以前n项和Sn=n(a1+an)/2的数列为等差数列
①an+1=Sn+1-Sn
②an=Sn-Sn_1(n≥2)①-②得
an+1-an=Sn+1+Sn_1-2Sn
=(n+1)(a1+an+1)/2+(n-1)(an+an_1)/2-n(a1+an)
=1/2[(n+1)an+1+(n-1)an_1-2nan]
可得2(an+1-an)=(n+1)an+1+(n-1)an_1-2nan(n≥2)
整理可得2(n-1)an=(n-1)an+1+(n-1)an_1(n≥2)
即2an=an+1+an_1(n≥2)
根据等差数列的特性可知:此数列为等差数列
第二种方法:
已知等差数列前n项的和为
Sn=na1+n(n-1)d/2(n≥1,d为等差)
=na1/2+[na1+n(n-1)d]/2
=na1/2+n[a1+(n-1)d]/2
=na1/2+nan/2
=n(a1+an)/2
即等差数列Sn=na1+n(n-1)d/2=n(a1+an)/2(n≥1,d为等差)
所以前n项和Sn=n(a1+an)/2的数列为等差数列
已知数列前n项和Sn=n(a1+an)/2,如何证明该数列为等差数列
已知数列{An}的前n项和Sn=3n²-2n,证明数列{An}为等差数列
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
已知正项数列an的前n项和为Sn,a1=1,(an-2)²=8Sn-1.证明an是等差数列.
数列{an}满足a1=1,设该数列的前n项和为Sn,且Sn,Sn+1,2a1成等差数列.用数学归纳法证明:Sn=(2n-
已知数列an满足a1=2 其前n项和为Sn Sn =n+7~3an 数列bn满足 bn=an~1 证明数列bn是等差数列
已知数列{an}中,a2=2,前n项和为Sn,且Sn=n(an+1)/2证明数列{an+1-an}是等差数列
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
已知数列{an}的前n项和为Sn,a1=1,数列{an+Sn}是公差为2的等差数列 证明{an-2}是等比数列 an=n
已知数列{an}前n项和为Sn,对于n属于自然数,总有Sn=(a1+an)n/2,求证{an}为等差数列.
设数列{an}的前n项和为Sn,若对任意正整数,都有Sn=n(a1+an)/2,证明{an}是等差数列.
数列{an}是等差数列,已知a1=19,d=-2,Sn为{an}的前n项和