函数F(X)=(根号下X^2+1)-aX证明:当a≥1时函数F(X)在区间(0,+∞)上是单调函数
函数F(X)=(根号下X^2+1)-aX证明:当a≥1时函数F(X)在区间(0,+∞)上是单调函数
函数F(X)=(根号下X^2+1)-aX,其中a>0 证明:当a≥1时函数F(X)在区间(0,+∞)上是单调函数
设函数f(x)=根号x^2+1 -ax(-ax在根号外)证明当a大于等于1时,函数f(x)在区间[0,+∞)上是单调函数
设函数f(x)=(根号下x^2+1)-ax,其中a>0.证明:当a>=1时,函数f(x)在区间[0,+无穷)上是单调函数
设函数F(X)=(根号下X平方+1)-ax,其中a大于等于1.证明F(X)在区间(0,+无穷)上是单调函数
设导数f(x)=根号(x^2+1)-ax,其中a≥1.证明:f(x)在区间[0,+∞)上是单调递减函数.
设函数f(x)=根号x'2+1-ax,其中a>=1,证明:f(x)在区间[0,+&)上是单调递减函数
设函数f(x)=根号下x方+1-ax当a>1时证明f(x)在[0 正无穷)上为单调函数
证明:函数f(x)=根号下(x^2+1)在区间[0.正无穷)上是单调增函数
设函数f(x)=根号(x^2+1) - ax,其中a>0,证明:当a≥1时f(x)在区间[0,+&)上是减函数
设函数f(x)=【根号(x2+1)】-ax,当a>=1时,试证函数f(x)在区间【0,+无穷】上是单调函数
设函数f(x)=√x^+1-ax,当a属于【1,正无穷)时,证明函数f(x)在区间【0,正无穷)上是单调减函数