作业帮 > 数学 > 作业

高数极限问题,证明:若lim x→∞(1+1/x)^x=e 那么 lim x→∞(1-1/x)^x=e^-1

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 17:01:10
高数极限问题,证明:若lim x→∞(1+1/x)^x=e 那么 lim x→∞(1-1/x)^x=e^-1
证明:
若lim x→∞(1+1/x)^x=e 那么 lim x→∞(1-1/x)^x=e^-1
因为
lim x→∞(1+1/x)^x=e
将X用-X代替,那么-X→∞,可得lim x→∞(1-1/x)^-x=e,则lim x→∞(1-1/x)^x=[lim x→∞(1-1/x)^-x]^-1=e^-1
即得证.