证明:cos^4 a-sin^4 a=cos^2 a(1-tan a)(1+ tan a)
证明:cos^4 a-sin^4 a=cos^2 a(1-tan a)(1+ tan a)
证明tan a/2=sin a/(1+cos a)
证明恒等式tan a*sin a/tan a-sin a=1+cos a/sin a
为什么 tan a +1/tan a=sin^2 a +cos^2 a/(sina cos a)
tan a/2=(1-cos a)/sin a=sin a/(1+cos a)如何证明?
已知tan a=-1/3,求4sin a-2cos a/5cos a+3sin a=
tan a/2=sin/1+cos a=1-cos a/sin a
求证:tan a/2=(1-cos)/sin a=sin a/(cos a+1)
已知tan(a+b)=2/5,tan(b-pai/4)=1/4,求(cos a+sin a)/(cos a-sin a)
求证:sin a(1+tan a)+cos a(1+1/tan a)=1/sin a+1/cos a
证明1-COS^2α/(SINα-COSα)-SINα+COSα/(TAN^2a-1)=SINa+COSa
(sin a+tan a)(cos a+cot a)等于(1+sin a)(1+cos a) 证明恒等式成立