在三棱锥p—ABC中,三角形PAB是等边三角形,角PAC=角PBC=90度.(1)证明AB垂直PC(2)若pc=4,且平
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 12:00:09
在三棱锥p—ABC中,三角形PAB是等边三角形,角PAC=角PBC=90度.(1)证明AB垂直PC(2)若pc=4,且平面PAC垂直平面PBC,求三棱锥p—ABC的体积《高中数学高一》
(1)证明:因为△PAB是等边三角形,
∠PAC=∠PBC=90°,
所以Rt△PBC≌Rt△PAC,
可得AC=BC.
如图,取AB中点D,连接
PD、CD,
则PD⊥AB,CD⊥AB,
所以AB⊥平面PDC,
所以AB⊥PC.
(2)作BE⊥PC,垂足为E,连接AE.
因为Rt△PBC≌Rt△PAC,
所以AE⊥PC,AE=BE.
由已知,平面PAC⊥平面PBC,
故∠AEB=90°.
因为Rt△AEB≌Rt△PEB,
所以△AEB,△PEB,△CEB都是等腰直角三角形.
由已知PC=4,得AE=BE=2,
△AEB的面积S=2.
因为PC⊥平面AEB,
所以三棱锥P-ABC的体积
V=1/ 3 ×S×PC=8/ 3 . 再答:
∠PAC=∠PBC=90°,
所以Rt△PBC≌Rt△PAC,
可得AC=BC.
如图,取AB中点D,连接
PD、CD,
则PD⊥AB,CD⊥AB,
所以AB⊥平面PDC,
所以AB⊥PC.
(2)作BE⊥PC,垂足为E,连接AE.
因为Rt△PBC≌Rt△PAC,
所以AE⊥PC,AE=BE.
由已知,平面PAC⊥平面PBC,
故∠AEB=90°.
因为Rt△AEB≌Rt△PEB,
所以△AEB,△PEB,△CEB都是等腰直角三角形.
由已知PC=4,得AE=BE=2,
△AEB的面积S=2.
因为PC⊥平面AEB,
所以三棱锥P-ABC的体积
V=1/ 3 ×S×PC=8/ 3 . 再答:
在三棱锥p—ABC中,三角形PAB是等边三角形,角PAC=角PBC=90度.(1)证明AB垂直PC(2)若pc=4,且平
如图在三棱锥P-ABC中,三角形PAB是等边三角形,角PAC=角PBC=90度.(1)证:AB垂直PC (2)若PC=4
三棱锥P-ABC中,三角形PAB是等边三角形,角PAC=角PBC=90度求证AB⊥PC
如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.
在三棱锥P-ABC中,已知底面ABC是以C为直角三角形,PC垂直ABC,AC=18,PC=6,BC=9,G是三角形PAB
在三棱锥P-ABC中,侧面PAC垂直面ABC,PA=PB=PC=3 求AB垂直BC
已知PA垂直于三角形ABC所在平面,且角ACB=90度.求证:(1)BC垂直平面PAC (2)BC垂直PC (3)已知P
三棱锥P-ABC中,角BAC=90度,PA=PB=PC=BC=2AB=2,(1)求证面PBC垂直面ABC
在三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC
三棱锥P-ABC中,PC垂直于平面ABC,PC=AC=2,AB=BC,D是BP上一点,且CD垂直于平面PAB,求异面直线
如图,三棱锥P-ABC中,到面PAC⊥ABC,PA=PB=PC=3.若AB=BC=2倍根号三,求AC与平面PBC所成角的
如图1,P是三角形ABC内一点,连接PA、PB、PC,在三角形PAB、三角形PBC和三角形PAC中