已知倾斜角的α 直线l过抛物线y^2=2Px(p>0)的焦点F,交抛物线于A(x1,y1) B(x2,y2),求弦长|A
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 10:14:46
已知倾斜角的α 直线l过抛物线y^2=2Px(p>0)的焦点F,交抛物线于A(x1,y1) B(x2,y2),求弦长|AB|
把l:y=(x-p/2)tana,代入y^2=2px,得
x^2*(tana)^2-x[p(tana)^2+2p]+(1/4)p^2*(tana)^2=0,
△=p^2*[(tana)^2+2]^2-p^2*(tana)^4
=4p^2*[1+(tana)^2],
∴弦长|AB| =(√△)/(tana)^2*√[1+(tana)^2]
=2p[1+(tana)^2]/(tana)^2]
=2p/(sina)^2.
x^2*(tana)^2-x[p(tana)^2+2p]+(1/4)p^2*(tana)^2=0,
△=p^2*[(tana)^2+2]^2-p^2*(tana)^4
=4p^2*[1+(tana)^2],
∴弦长|AB| =(√△)/(tana)^2*√[1+(tana)^2]
=2p[1+(tana)^2]/(tana)^2]
=2p/(sina)^2.
已知倾斜角的α 直线l过抛物线y^2=2Px(p>0)的焦点F,交抛物线于A(x1,y1) B(x2,y2),求弦长|A
设抛物线的方程y^2=2px(p>0),过抛物线焦点的直线交抛物线于A(x1,y1)B(x2,y2)
已知抛物线y^2=2px(p>0)的焦点,斜率为2√2的直线交抛物线于A(x1,y1),B(x2,y2)(x1
已知抛物线方程为y2=2px(p>0),过焦点F的直线l与抛物线交于A(x1,y1)、B(x2,y2),AA1、BB1垂
过抛物线y^2=2px(p大于0)的焦点作一条直线交抛物线于A(x1,y1)B(x2,y2)则y1y2/x1x2 为(
过抛物线y^2=2px(p>0)的焦点作一条直线,叫抛物线于点A(x1,y1),B(x2,y2),则(y1*y2)/(x
已知直线l过抛物线y*2=2px(p〉0)的焦点,并且与抛物线交于A(x1,x2)和B (y1,y2)两点 (1)求证y
6,过抛物线y^2=2px(p>0)的焦点作一条直线l交抛物线于A(x1,y1),B(x2,y2)两点,则y1y2/x1
设抛物线C:y^2=2px(p>0)的焦点为F,经过F的动直线l交抛物线C于A(x1,y1),B(x2,y2)两点,且y
已知过抛物线y^2=2px(p>0)的焦点 斜率为2根号2的直线交抛物线于A(x1,y1),B(x2,y2) -(x1
过抛物线y^2=2px(p>0)的焦点的直线l与抛物线交于A(x1,y1),B(x2,y2)两点,若点M(2,m)满足向
已知抛物线y=x2,直线l过抛物线的焦点且与抛物线分别交于A(x1,y1),B(x2,y2)两点 (1)求证:x1x2=