如图1,已知直线y=kx与抛物线y=-4 27 x2+22 3 交于点A(3,6). (1)求直线y=kx的解析式和线段
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 09:37:25
如图1,已知直线y=kx与抛物线y=-4 27 x2+22 3 交于点A(3,6). (1)求直线y=kx的解析式和线段OA的
如图1,已知直线y=kx与抛物线y=-4/27x²+22/3交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
如图1,已知直线y=kx与抛物线y=-4/27x²+22/3交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
(1)把点A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.
OA=3倍根号5
(2)QM分之QN是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时QN分之QM=QG分之QH=OH分之QH=tan角AOM=2
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…
∴QN分之QM=QG分之QH=OH分之QH=tan角AOM=2
当点P、Q在抛物线和直线上不同位置时,同理可得QM分之QN=2.①①
(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=2分之1OA=2分之3根号5
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴OC分之OF=OR分之AO=3分之3倍根号5=根号5
∴OF=2分之3根号5乘以根号5=2分之15
∴点F(2分之15,0),
设点B(x,-4分之27x的平方+3分之22),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴FR分之BK=AR分之AK
即7.5-3分之x-3=6分之6-(-4分之27x的平方+3分之22)
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5
(求AB也可采用下面的方法)
设直线AF为y=kx+b(k≠0)把点A(3,6),点F(2分之15,0)代入得
k=-3分之4,b=10,
∴y=-3分之4x+10
∴{y=-3分之4x+10
{y=-4分之27x的平方+3分之22
∴{x1=3 {x2=6
{y1=6(舍去) {y2=2
∴B(6,2),
∴AB=5…
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.…
设OE=x,则AE=3倍根号5﹣x (0
∵6=3k,
∴k=2,
∴y=2x.
OA=3倍根号5
(2)QM分之QN是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时QN分之QM=QG分之QH=OH分之QH=tan角AOM=2
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…
∴QN分之QM=QG分之QH=OH分之QH=tan角AOM=2
当点P、Q在抛物线和直线上不同位置时,同理可得QM分之QN=2.①①
(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=2分之1OA=2分之3根号5
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴OC分之OF=OR分之AO=3分之3倍根号5=根号5
∴OF=2分之3根号5乘以根号5=2分之15
∴点F(2分之15,0),
设点B(x,-4分之27x的平方+3分之22),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴FR分之BK=AR分之AK
即7.5-3分之x-3=6分之6-(-4分之27x的平方+3分之22)
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5
(求AB也可采用下面的方法)
设直线AF为y=kx+b(k≠0)把点A(3,6),点F(2分之15,0)代入得
k=-3分之4,b=10,
∴y=-3分之4x+10
∴{y=-3分之4x+10
{y=-4分之27x的平方+3分之22
∴{x1=3 {x2=6
{y1=6(舍去) {y2=2
∴B(6,2),
∴AB=5…
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.…
设OE=x,则AE=3倍根号5﹣x (0
如图1,已知直线y=kx与抛物线y=-4 27 x2+22 3 交于点A(3,6). (1)求直线y=kx的解析式和线段
已知直线y=-1/2x与抛物线y=-1/4x2+6交于A、B两点求线段AB的垂直平分线的解析式
如图,已知抛物线y=ax²与直线y=kx+4交于A(8,8)直线与X轴的交点为C,与y轴的交点为B(1)求A及
如图,已知以A(1,0)为顶点的抛物线与y轴交于点B,过点B的直线y=kx+1与该抛物线交于另一点c(3,4),
已知直线y=kx+b经过点A(-3,0),且与直线y=-3x交于点P,O是坐标原点,S△OAP=9,求该直线的解析式.
已知一次函数y=kx+b与x轴交于点(1,0),与直线t=2x—3和y交于同一点,求出这条直线的解析式.
直线y=kx+b与抛物线y=ax的平方交于a(1,m)b(-2,4)与y轴交于c点
已知直线y=kx+b与直线y=2x-3交于y轴上同一点,且过直线y=-3x上的点(m,6),求其解析式.
已知直线y=kx+b与x轴交于点(1,0),与直线y=2x-3和y轴交与同一点,求出这条直线的解析式.
已知直线y=kx+b与X轴正半轴交于A,与轴y轴交于B,若直线经过点(-1,-4),且OA+OB=3,求它的解析式
已知直线Y=KX+b过点A(1,0)且与Y轴交于B点.OA+OB=6 求直线的解析式,并写出与它平行且经过(0,m2+n
直线y=kx+b与抛物线y=ax²交于A(1,m),B(-2,4),于y轴交于点C.(1)求抛物线解析式.(2