高数 设f(x)在[a,b]上连续,c,d属于(a,b),t1>0,t2>0,证明:在[a,b]必有c,使得t1f(c)
高数 设f(x)在[a,b]上连续,c,d属于(a,b),t1>0,t2>0,证明:在[a,b]必有c,使得t1f(c)
设函数f(X)在区间[a,b]上连续,且f(a)b.证明存在c属于(a,b),使得f(c)=c
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明存在c,d属于(a,b)使得e的(d-c
高等数学,f(x)在a,b上有连续导数,c属于(a,b]使得f'(c)=0,存在的d属于(a,b),f'(d)=f(d)
设f(x)在(a,b)上连续,且f(a)=f(b),证明:存在点c属于(a,b)使得f(C)=f(c+b-a/2)
设f(x)在[a,b]上连续,在(a,b)可导,且f(a)=f(b)=0,证明存在c属于(a,b),使f'(c)+f(c
设f(x)在(a,b)内连续,a<x1<x2<b,试证在(a,b)内至少有一点c,使得t1f(x1)+t2f(x2)=(
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)
微积分 证明题设函数g(x)在[a,b]上连续,在(a,b)上可导,证明:(a,b)内至少存在一点c,使得g'(c)=[
b>a>0,f(x)在[a,b]上连续,在(a,b)内可导,证明,存在n属于(a,b)使得f(a)-f(b)=n(lna
设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a
关于积分中值定理的题设f(x)在[a,b]上连续,在(a,b)内可导,且存在c∈(a,b),使得∫ [a,b]f(x)d