设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 20:37:13
设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则b1=b2
a1,a2,...an.是n唯欧式空间R的一组基,
等价于a1,a2,...an线性无关,
等价于以(a1,a2,...an)为系数矩阵的齐次方程组只有零解
假设存在b1-b2不等于0,使得(b1,ai)=(b2,ai),(i=1,2...n.),
则:(b1-b2,ai)=0
b1-b2不等于0是以(a1,a2,...an)为系数矩阵的齐次方程组的解,
与只有零解矛盾.
因此,向量(b1,ai)=(b2,ai),(i=1,2...n.)则b1=b2
等价于a1,a2,...an线性无关,
等价于以(a1,a2,...an)为系数矩阵的齐次方程组只有零解
假设存在b1-b2不等于0,使得(b1,ai)=(b2,ai),(i=1,2...n.),
则:(b1-b2,ai)=0
b1-b2不等于0是以(a1,a2,...an)为系数矩阵的齐次方程组的解,
与只有零解矛盾.
因此,向量(b1,ai)=(b2,ai),(i=1,2...n.)则b1=b2
设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则
设a1,a2...an是n维线性空间的一组基,b1,b2...,bs是V的一组向量
设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2
设a1,a2...an是Rn的一个基,a∈Rn,证明:若(a,ai)=0,i=1,2...n,则a=0
a1,a2,...an分别为1,1/2,...1/n的一个排列,b1,b2...bn亦是,ai+bi=ci,(1≤i≤n
设W是R^n的一个非零子空间,而对于W的每一个向量(a1,a2.an)来说,要么a1=a2=.=an=0,要么每一个ai
设a1,.an是n维线性空间的一组基,A是n*s矩阵,(b1,...,bs)=(a1,.,an)A,证明L(b1,...
设ai>0,(i=1,2,...,n)求证:(a1+a2+...+an)/n
设a1,a2,···an是任意n个整数,证明存在i和k(i>=0,k>=1)使得ai+1+····+ai+k能被n整除.
线性代数简单证明设向量组a1,a2,an为n维向量组,B1=a1+a2,B2=a2+a3,…Bn=an+a1证1●当n为
线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)
设a1,a2,...,an是1,2,...,n的一个排列,把排在ai的左边且比ai小的数的个数称为ai的和谐数(i=1,