作业帮 > 数学 > 作业

设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 20:37:13
设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则b1=b2
a1,a2,...an.是n唯欧式空间R的一组基,
等价于a1,a2,...an线性无关,
等价于以(a1,a2,...an)为系数矩阵的齐次方程组只有零解

假设存在b1-b2不等于0,使得(b1,ai)=(b2,ai),(i=1,2...n.),
则:(b1-b2,ai)=0
b1-b2不等于0是以(a1,a2,...an)为系数矩阵的齐次方程组的解,
与只有零解矛盾.
因此,向量(b1,ai)=(b2,ai),(i=1,2...n.)则b1=b2