a1=1,a(n+1)=(1+1/n)an+n+1/2^n,设bn=an/n求数列bn的通项公式
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 10:02:50
a1=1,a(n+1)=(1+1/n)an+n+1/2^n,设bn=an/n求数列bn的通项公式
A(n+1)=(1+1/n)An+(n+1)/2^n
A(n+1)=(n+1)/n×An+(n+1)/2^n
两边除n+1
A(n+1)/(n+1)=An/n+1/2^n
B(n+1)=Bn+1/2^n
Bn=B(n-1)+1/2^(n-1)
B(n-1)=B(n-2)+1/2^(n-2)
……
B2=B1+1/2
上式相加,相同项消去
Bn=B1+1/2×(1-(1/2)^(n-1))/(1-1/2)
=B1+1-1/2^(n-1)
B1=A1/1=1
Bn=2-1/2^(n-1)
A(n+1)=(n+1)/n×An+(n+1)/2^n
两边除n+1
A(n+1)/(n+1)=An/n+1/2^n
B(n+1)=Bn+1/2^n
Bn=B(n-1)+1/2^(n-1)
B(n-1)=B(n-2)+1/2^(n-2)
……
B2=B1+1/2
上式相加,相同项消去
Bn=B1+1/2×(1-(1/2)^(n-1))/(1-1/2)
=B1+1-1/2^(n-1)
B1=A1/1=1
Bn=2-1/2^(n-1)
a1=1,a(n+1)=(1+1/n)an+n+1/2^n,设bn=an/n求数列bn的通项公式
数列按满足a1=1 a(n+1)=2^n-3an,设bn=an/2^n,求数列bn的递推公式 bn的通项公式an的通项公
在数列{an}中,a1=1,a(n+1)=(1+1/n)an+(n+1/2^n)设bn=an/n,求bn的通项公式
在数列an中,A1=1,A(n+1)=(1+1/n)An+(n+1)/2,设Bn=An/n,求数列Bn的通项公式.
已知数列an满足a1=m,a的n+1=2an+3的n-1次方,设bn=a的n+1/3的n次方,求bn的通项公式
在数列﹛an﹜中,a1=1,a(n+1)=(1+1÷n)an+[(n+1)÷2的n次方],设bn=an÷n,求bn的通项
a1=a.an+1=Sn+3^n.设bn=Sn-3^n.求数列bn的通项公式.
已知数列 {an} 的通项公式an=2n+1,由bn=a1+a2+a3+...+an/n所确定的数列{bn}的前n
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)/(2^n) (1) 设bn=an/n,求数列{bn
数列{an}前n项和为Sn,已知a1=1,S(n+1)=4an+2,1、设bn=a(n+1)-2an,求bn的通项公式2
an=3*2^(n-1),设bn=n/an求数列bn的前n项和Tn
已知数列{an}中,a1=2,a(n+1)-an-2n-2=0,(n∈N+),(1)求数列{an}的通项公式(2)设bn