作业帮 > 数学 > 作业

在三角形ABC中,sinA(cosB+cosC)=sinB+sinC,求证这个是直角三角形

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 03:39:57
在三角形ABC中,sinA(cosB+cosC)=sinB+sinC,求证这个是直角三角形
RT
sinA=(sinB+sinC)/(cosB+cosC)
sin(B+C)=(sinB+sinC)/(cosB+cosC)
sinBcosC+cosBsinC=(sinB+sinC)/(cosB+cosC)
sinBcosBcosC+sinB(cosC)^2+(cosB)^2sinC+cosBsinCcosC=sinB+sinC
sinBcosBcosC+cosBsinCcosC=sinB-sinB(cosC)^2+sinC-(cosB)^2sinC
sinBcosBcosC+cosBsinCcosC=sinB(sinC)^2+(sinB)^2sinC
cosBcosC(sinB+sinC)=sinBsinC(sinB+sinC)
(cosBcosC-sinBsinC)(sinB+sinC)=0
cos(B+C)(sinB+sinC)=0
sinB+sinC≠0
所以cos(B+C)=0
B+C=90度,直角三角形