求数列1/5,2/5^2.3/5^3,1/5^4,2/5^5,3/5^6...的前3n项和
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 17:37:32
求数列1/5,2/5^2.3/5^3,1/5^4,2/5^5,3/5^6...的前3n项和
求数列1/5,2/5^2,3/5^3,1/5^4,2/5^5,3/5^6...的前3n项和.
求数列1/5,2/5^2,3/5^3,1/5^4,2/5^5,3/5^6...的前3n项和.
本题采用分类求和.
a1+a2+a3+a4+a5+a6+……+a(3n-2)+a(3n-1)+a3n
=[a1+a4+……+a(3n-2)]+[a2+a5+……+a(3n-1)]+(a3+a6+……+a3n)
=[1/5+1/5^4+……+1/5^(3n-2)]+[1/5²+1/5^5+……+1/5^(3n-1)]+[1/5³+1/5^6+……+1/5^3n]
=1/5·[1-1/5^(3n)]/(1-1/5³)+1/5²·[1-1/5^(3n)]/(1-1/5³)+1/5³·[1-1/5^(3n)]/(1-1/5³)
={[1-1/5^(3n)]/(1-1/5³)}·(1/5+1/5²+1/5³)
=1/4·(1-1/125^n)
a1+a2+a3+a4+a5+a6+……+a(3n-2)+a(3n-1)+a3n
=[a1+a4+……+a(3n-2)]+[a2+a5+……+a(3n-1)]+(a3+a6+……+a3n)
=[1/5+1/5^4+……+1/5^(3n-2)]+[1/5²+1/5^5+……+1/5^(3n-1)]+[1/5³+1/5^6+……+1/5^3n]
=1/5·[1-1/5^(3n)]/(1-1/5³)+1/5²·[1-1/5^(3n)]/(1-1/5³)+1/5³·[1-1/5^(3n)]/(1-1/5³)
={[1-1/5^(3n)]/(1-1/5³)}·(1/5+1/5²+1/5³)
=1/4·(1-1/125^n)
已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn
关于数列的几道题啊、若数列{an}的通项an=(2n-1)3n(n是n次方),求此数列的前n项和Sn求数列1,3+4,5
求数列的前n项和1/2,3/4,5/8,…,2n-1/2^n,…
试求数列1/2,3/4,5/8,7/16.的前n项和
求数列-1,2,-3,4,-5…的前n项和
求数列1/2,3/4,5/8...2n-1/2^n,求前n项和
求数列1/2 3/2^2 5/2^3 .2n-1/2^n的前n项和
求数列(1-a),(3-a^2),(5-a^3),.,(2n-1)-a^n的前n项和
已知数列an的前n项和为sn=2n^2+5n+1,数列bn的前n项和tn满足Tn=(3/2)bn-3/2 求数列an的通
已知数列{an}的前n项和为Sn=n的平方+2n+3 (1) 求数列{an}的通项公式 (2)求数列{Sn}前5项和
求数列Cn=2^n(2n-1)的前n项和Tn=2*1+4*3+8*5+…+2^n(2n-1)
求数列1+1/2,3+1/4,5+1/8,7+1/16的前n项和.