作业帮 > 数学 > 作业

在等比数列{an}中,已知对任意自然数n,a1+a2+…+an=2的n次方减1,则a1的平方+a2的平方+…+an的平方

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 15:48:01
在等比数列{an}中,已知对任意自然数n,a1+a2+…+an=2的n次方减1,则a1的平方+a2的平方+…+an的平方= .
令an=a1*q^(n-1)
则Sn=a1*(1-q^n)/(1-q)=-a1/(1-q) *q^n +a1/(1-q)
故a1/(1-q)=-1,q=2
所以a1=1,
an=2^(n-1)
那么(an)^2=[2^(n-1)]^2=4^(n-1)
这就是(an)^2的通项公式
令a1的平方+a2的平方+…+an的平方=Tn
然后利用等比数列求和公式可以得到:Tn=1*(1-4^n)/(1-4)=(4^n-1)/3