作业帮 > 数学 > 作业

△ABC和△DEF为两个叠放在一起的等腰直角三角形(如图).已知BC=10,CF=1,DE=7.则阴影部分的面积是多少?

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 03:06:38
△ABC和△DEF为两个叠放在一起的等腰直角三角形(如图).已知BC=10,CF=1,DE=7.则阴影部分的面积是多少?
根据分析可知,因为△ABC和△DEF为两个叠放在一起的等腰直角三角形,所以∠FMB=90°,∠FCG=90°,∠BEH=90°,△FBM它的高等于FB的一半;
因为FE=DE=7,CF=1,所以CE=7-1=6;
因为BC=10,所以BE=10-6=4;
FB=FC+BC=1+10=11;
阴影部分的面积:
1
2×11×(11÷2)-
1
2×1×1-
1
2×4×4,
=30.25-0.5-8,
=21.75;
答:阴影部分的面积是21.75.