已知数列{an}中,an=1+1/2+1/3+...+1/n,记sn=a1+a2+...+an用数学归纳法证明sn=(n
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:52:16
已知数列{an}中,an=1+1/2+1/3+...+1/n,记sn=a1+a2+...+an用数学归纳法证明sn=(n+1)an-n
(1) 当n=1时
S1=(1+1)a1-1
=2a1-1
=2-1
=1
∴当n=1时sn=(n+1)an-n成立
(2)假设n=k时sn=(n+1)an-n成立
即有 Sk=(k+1)ak-k
Sk+1=1+1/2+1/3+...+1/k+1/(k+1)
=Sk+1/(k+1)
=(k+1)ak-k+1/(k+1)
=(k+1)/k-k+1/(k+1)
=1+1/k-k+1/(k+1)
=(k+2)/(k+1)-(k+1)
=(k+2)ak+1-(k+1)
即当n=k+1时 Sk+1=(k+2)ak+1-(k+1) 成立
综上所述,当n∈N* 时有sn=(n+1)an-n 成立
S1=(1+1)a1-1
=2a1-1
=2-1
=1
∴当n=1时sn=(n+1)an-n成立
(2)假设n=k时sn=(n+1)an-n成立
即有 Sk=(k+1)ak-k
Sk+1=1+1/2+1/3+...+1/k+1/(k+1)
=Sk+1/(k+1)
=(k+1)ak-k+1/(k+1)
=(k+1)/k-k+1/(k+1)
=1+1/k-k+1/(k+1)
=(k+2)/(k+1)-(k+1)
=(k+2)ak+1-(k+1)
即当n=k+1时 Sk+1=(k+2)ak+1-(k+1) 成立
综上所述,当n∈N* 时有sn=(n+1)an-n 成立
已知数列{an}中,an=1+1/2+1/3+...+1/n,记sn=a1+a2+...+an用数学归纳法证明sn=(n
已知数列{an}中,a1=1,且Sn,Sn+1,2S1成等差数列,用数学归纳法证明Sn=(2^n-1)/2^(n-1)
在数列 an 中,a1=-2/3 其前n项和Sn满足an=Sn+1/Sn+2(n>=2).用数学归纳法证明Sn=-(n+
数列{an}中,满足a1=1,Sn=n^2·an (n属于N正),猜想数列的通项公式,用数学归纳法证明
在数列an中an大于0,且前n项Sn=1/2(an+1/an),计算a1,a2,a3,猜测an的表达式,用数学归纳法证明
已知数列{an}满足a1=1/2,a1+a2+.+an=n^2an,用数学归纳法证明:an=1/n(n+1)
已知数列{an}满足a1=1/2,a1+a2+……+an=n^2an,用数学归纳法证明an=1/{n(n+1)}
已知数列{An}满足A1=0.5,A1+A2+…+An=n^2An(n∈N*),试用数学归纳法证明:An=1/n(n+1
Sn=1/2(an+1/an) Sn是前n项和 求a1,a2,a3.猜想{an}的通项公式,并用数学归纳法证明
已知正整数数列{an},(n∈N*)中,前n项和为Sn,且2Sn=an+1/an,用数学归纳法证明an=(根号下n)-(
已知数列{an}中,a2=2,前n项和为Sn,且Sn=n(an+1)/2证明数列{an+1-an}是等差数列
已知数列an满足a1=1,前n项和为Sn,且Sn,S(n+1),2a1成等差数列,用数学归纳法证明:Sn=(2^n)-1