作业帮 > 数学 > 作业

如何证明微分的几何意义?如何能证明“当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小)”?

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 03:53:46
如何证明微分的几何意义?如何能证明“当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小)”?
微分-几何意义
几何意义
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量.当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段.
---问题是,如何能证明“当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小)”?
这个结论的前提是f′(x)≠0,
Δy=dy+0(Δx) dy=f′(x)Δx
|Δy-dy|/|Δy|=|Δy/dy-1| =|(Δy/Δx)×1/f′-1| 当Δx趋于0时,Δy/Δx)趋于f′,所以
Δy-dy|/|Δy|趋于0
再问: Δy=dy+0(Δx) dy---公式里“0(Δx) dy”作何解释?
再答: "Δy=dy+0(Δx) dy"你写的不对,仔细看书,应该是 “Δy=dy+0(dy)”意思就是 |Δy-dy|/|dy|当Δx趋于0时的极限是0 证明: |Δy-dy|/|dy|=|=|Δy/dy-1| =|(Δy/Δx)×1/f′-1| 当Δx趋于0时,Δy/Δx)趋于f′ (Δy/Δx)×1/f′趋于1,所以 |Δy-dy|/|dy|趋于0