作业帮 > 数学 > 作业

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为根号3/2,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 03:18:23
已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为根号3/2,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.圆C(k):x^2+y^2+2kx-4y-21=0(k∈R)的圆心为点A(k)(1)求椭圆G的方程;(2)求△A(k)F1F2的面积;(3)是否存在圆C(k)包围椭圆G?说明理由
注:(k )为下脚标 (1)会了,主要是(2)(3)的详细解答
设椭圆方程为:x²/a²+y²/b²=1 (a>b>0,因)
e=√3/2,即:c/a=√3/2,(a²-b²)/a²=3/4,a²=4b²
第一种情况:P(0,3/2)在椭圆上
又由于椭圆中心在原点,且焦点在X轴上,点P(0,3/2)在椭圆上
所以b=3/2,b²=9/4,a²=9
椭圆方程为:x²/9 + y²/(9/4)=1
第二种情况:P(0,3/2)不在椭圆上(注:解出的b应该小于3/2)
x²/a²+y²/b²=1 ,即x²/4b²+y²/b²=1,x²+4y²=4b²,x²=4b²-4y²
设椭圆上距离P的最远点的坐标是(x,y),则有:
(x-0)²+(y-3/2)²,把x²=4b²-4y²代入,整理可得:
4b²-3(y²+y)+ (9/4),4b²是定值,-3(y²+y)是开口向下的二次函数,
显然最大值在y=-1/2处取得,为7,y=-1/2时,4b²-3(y²+y)+ (9/4)=7
解得:b²=1(符合
已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为根号3/2,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之 已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为√3/2,两个焦点分别为F1、F2.椭圆G上一点到F1,F2的距离之和 已知椭圆G的中心在坐标原点,离心率为3分之根号5,焦点F1、F2在x轴上,椭圆G上一点N到F1和F2的距离之和为6. 已知椭圆C的中心在坐标原点,焦点F1,F2在x轴上,椭圆C的离心率为2分之1,短轴一个端点到右焦点F2的距离为2,求椭圆 已知中心在坐标原点,焦点F1、F2在x轴上的椭圆C的离心率为2分之根号3, 已知椭圆G的中心在坐标原点上,长轴在X轴上,离心率为根号3/2,且椭圆G上一点到其他两个焦点的距离之和为 已知椭圆C的中心在坐标原点,焦点在x轴上,离心率是根号3/2,F1,F2分别为左右焦点,点M在椭圆上且三角形MF1F2的 已知点(0,-根号5)是中心在原点,长轴在x轴上的椭圆的一个顶点,离心率为根号6/6,椭圆的左右焦点分别为F1和F2.求 椭圆的中心在坐标原点,长轴在x轴上,离心率为根号3/2,且G上一点到G的两个焦点距离之和为12,求椭圆方程 已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为32,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为( 已知中心在坐标原点,焦点F1、F2再x轴上的椭圆C的离心率为根号3/2,抛物线X^2=4y的焦点是椭圆C的一个顶点 ( 已知中心在坐标原点,焦点F1、F2再x轴上的椭圆C的离心率为根号3、2,抛物线X^2=4y的焦点是椭圆C的一个顶点