在相似三角形的复习课上,王老师出示下题:如图1,△ABC为等边三角形,面积为S.D1,E1,F1分别是△ABC三边上的点
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 13:54:45
在相似三角形的复习课上,王老师出示下题:如图1,△ABC为等边三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且满足AD1=BE1=CF1=1/2AB,连结D1E1,E1F1,F1D1,可得△D1E1F1.
解答下列问题:
(1)填空:用S表示△AD1F1的面积S1= ,△D1E1F1的S1'=;
(2)当D2,E2,F2分别是等边△ABC三边上的点,且满足AD2=BE2=CF2=1/3AB,求△AD2F2的面积S2和△D2E2F2的面积S2'(用含有S的代数式表示);
(3)探究:已知Dn,En,Fn分别是等边△ABC三边上的点,且满足ADn=BEn=CFn=1/(n+1)AB(n为正整数),则△ADnFn的面积Sn= ,△DnEnFn的面积Sn'= (直接用含n代数式表示).
解答下列问题:
(1)填空:用S表示△AD1F1的面积S1= ,△D1E1F1的S1'=;
(2)当D2,E2,F2分别是等边△ABC三边上的点,且满足AD2=BE2=CF2=1/3AB,求△AD2F2的面积S2和△D2E2F2的面积S2'(用含有S的代数式表示);
(3)探究:已知Dn,En,Fn分别是等边△ABC三边上的点,且满足ADn=BEn=CFn=1/(n+1)AB(n为正整数),则△ADnFn的面积Sn= ,△DnEnFn的面积Sn'= (直接用含n代数式表示).
在相似三角形的复习课上,王老师出示下题:如图1,△ABC为等边三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且满足AD1=BE1=CF1=1/2AB,连结D1E1,E1F1,F1D1,可得△D1E1F1.
解答下列问题:
(1)填空:用S表示△AD1F1的面积S1=1/4S ,△D1E1F1的S1'=1/4S ;
(2)当D2,E2,F2分别是等边△ABC三边上的点,且满足AD2=BE2=CF2=1/3AB,求△AD2F2的面积S2和△D2E2F2的面积S2'(用含有S的代数式表示);
S2=1/3×(1-1/3)×S=2/9S
S2'=S-3S2=S-3×2/9S=1/3S
(3)探究:已知Dn,En,Fn分别是等边△ABC三边上的点,且满足ADn=BEn=CFn=1/(n+1)AB(n为正整数),则△ADnFn的面积Sn= ,△DnEnFn的面积Sn'= (直接用含n代数式表示).
Sn=1/(n+1)×[1-1/(n+1)]×S=n/(n+1)² S
Sn'=S-3Sn=S-3×n/(n+1)² S=(n²-n+1)/(n+1)² S
解答下列问题:
(1)填空:用S表示△AD1F1的面积S1=1/4S ,△D1E1F1的S1'=1/4S ;
(2)当D2,E2,F2分别是等边△ABC三边上的点,且满足AD2=BE2=CF2=1/3AB,求△AD2F2的面积S2和△D2E2F2的面积S2'(用含有S的代数式表示);
S2=1/3×(1-1/3)×S=2/9S
S2'=S-3S2=S-3×2/9S=1/3S
(3)探究:已知Dn,En,Fn分别是等边△ABC三边上的点,且满足ADn=BEn=CFn=1/(n+1)AB(n为正整数),则△ADnFn的面积Sn= ,△DnEnFn的面积Sn'= (直接用含n代数式表示).
Sn=1/(n+1)×[1-1/(n+1)]×S=n/(n+1)² S
Sn'=S-3Sn=S-3×n/(n+1)² S=(n²-n+1)/(n+1)² S
在相似三角形的复习课上,王老师出示下题:如图1,△ABC为等边三角形,面积为S.D1,E1,F1分别是△ABC三边上的点
如图9,△ABC为等边三角形,面积为S ,D1 ,E1 ,F1 分别为 △ABC三边上的点,
如图1,△ABC为等边三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=12AB,连
如图三角形ABC为等边三角形,D分别是BC上的点,以AD为边作等边三角形ADE求证:三角形ACD全等于三角形ABE.
数学课上,张老师出示了问题:如图1,△ABC是等边三角形,点D是边BC的中点.∠ADE=60°,且DE交△ABC外角∠A
(2013•许昌一模)某次数学课上,老师出示了一道题,如图1,在边长为4等边三角形ABC中,点E在AB上.AEAB=13
如图,DEF分别是ABC三边的中点,P为BC上任意一点,三角形DPM是等边三角形,那么PE=MF,请说明理由
如图,已知Rt△ABC的面积为S,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作
如图,已知三角形ABC为等边三角形,D、F分别是BC、AB上的点,以AD为边作等边三角形ADE,连接EF.
如图,三角形ABC为等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE
如图,点D、E、F分别在等边△ABC的三边上,且AD=BE=CF.求证:△DEF是等边三角形.
如图,以三角形ABC的三边为边,分别做三个等边三角形.1)求证:四边形ADEF是平行四边形;