已知函数f(x)=(x-1)^2,g(x)=10(x-1),数列{an}、{bn}满足
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 03:54:41
已知函数f(x)=(x-1)^2,g(x)=10(x-1),数列{an}、{bn}满足
已知函数f(x)=(x-1)^2,g(x)=10(x-1),
数列{an}、{bn}满足a1=2,(an+1-an)g(an)+f(an)=0,
bn=9/10(n+2)(an-1)
(1)求证:数列{an-1}是等比数列;
(2)若t>0,数列{t^n/bn}是递增数列,求实数t的取值范围.
已知函数f(x)=(x-1)^2,g(x)=10(x-1),
数列{an}、{bn}满足a1=2,(an+1-an)g(an)+f(an)=0,
bn=9/10(n+2)(an-1)
(1)求证:数列{an-1}是等比数列;
(2)若t>0,数列{t^n/bn}是递增数列,求实数t的取值范围.
(1)由方程,(an+1-an)g(an)+f(an)=0得:
(an+1-an)*10*(an-1)+(an-1)^2=0
整理得(an-1)[10*(an+1-an)+an-1]=0;
显然由a1=2,则an显然不是常数列,且不等于1,所以两边除以an-1;
得10*(an+1-an)+an-1=0.
整理后得:10(an+1-1)=9(an-1),a1-1=1,{an-1}就是首项为1,公比为9/10的等比数列.
(2)带入an-1得bn=(9/10)^n*(n+2).
又有{t^n/bn},设其通项为cn=【1/(n+2)】*(10t/9)^n为递增数列;
那么对于任意的自然数n,我们都有cn+1>=cn
显然我们可以得:10/9*t>=n+3/n+2
该不等式恒成立条件是左边的比右边的最大值还要大,就行
取n=1.求得n>=6/5
(an+1-an)*10*(an-1)+(an-1)^2=0
整理得(an-1)[10*(an+1-an)+an-1]=0;
显然由a1=2,则an显然不是常数列,且不等于1,所以两边除以an-1;
得10*(an+1-an)+an-1=0.
整理后得:10(an+1-1)=9(an-1),a1-1=1,{an-1}就是首项为1,公比为9/10的等比数列.
(2)带入an-1得bn=(9/10)^n*(n+2).
又有{t^n/bn},设其通项为cn=【1/(n+2)】*(10t/9)^n为递增数列;
那么对于任意的自然数n,我们都有cn+1>=cn
显然我们可以得:10/9*t>=n+3/n+2
该不等式恒成立条件是左边的比右边的最大值还要大,就行
取n=1.求得n>=6/5
已知函数f(x)=(x-1)^2,g(x)=10(x-1),数列{an}、{bn}满足
已知函数f(x)=4x+1,g(x)=2x,数列{an}{bn}满足条件a1=1,an=f(bn)=g(bn+1)求数列
已知函数f(x)=4x+1,g(x)=2x,数列{an}{bn}满足条件a1=1,an=f(bn)=g(bn+1) Cn
已知函数,f(x)=2x+1,g(x0=x,(x属于R,数列,{an},{bn}满足a1=1,an=f(bn)=g(bn
已知函数f(x)=2x/(x+1),数列{an}满足a1=4/5,a(n+1)=f(an),bn=1/an-1.
已知数列{an},{bn}与函数f(x),g(x),x∈R满足条件:
(2009•崇文区一模)已知函数f(x)=4x+1,g(x)=2x,x∈R,数列{an},{bn}满足条件:a1=1,a
(2009•崇文区一模)已知函数f(x)=4x+1,g(x)=2x,x∈R,数列{an},{bn},{cn}满足条件:a
已知函数f(x)=x/2x+1,x>0,数列{an}满足a1=1,an+1=f(an);数列{bn}满足b1=1/2,b
已知数列an中 a1=1 且点(an,an+1)在函数f(x)=x+2的图像上 设数列bn满足bn=2^an-1,求bn
已知数列{an}的前n项为Sn,点(n,Sn)在函数f(x)=2^x-1的图像上,数列{bn}满足
已知函数g(x)=x^2+2x,数列{an}满足a1+1/2,2a(n+1)=g(an).数列{bn}的前n项和为Tn,