已知S是两个整数平方和的集合,即S={X|X=M²+N²,M∈Z,n∈Z}.求证:
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 02:57:23
已知S是两个整数平方和的集合,即S={X|X=M²+N²,M∈Z,n∈Z}.求证:
1.若s,t∈S,则st∈S
2.若s,t∈S,t≠0,则s/t=p²+q²,其中p,q为有理数
1.若s,t∈S,则st∈S
2.若s,t∈S,t≠0,则s/t=p²+q²,其中p,q为有理数
1.若s,t∈S,
则s = m^2 + n^2,t = u^2 + v^2,其中m,n,u,v∈Z.
那么st = (m^2 + n^2)(u^2 + v^2) = (mu + nv)^2 + (mv - nu)^2,
其中mu + nv∈Z.,mv - nu∈Z.
所以st∈S
2.若s,t∈S,t ≠0,
仍设s = m^2 + n^2,t = u^2 + v^2,其中m,n,u,v∈Z.
因为t ≠0,故u,v不同时为零.
则s/t = st/t^2 = (m^2 + n^2)(u^2 + v^2)/(u^2 + v^2)^2
= ((mu + nv)^2 + (mv - nu)^2)/(u^2 + v^2)^2
= {(mu + nv)/(u^2 + v^2)}^2 + {(mv - nu)/(u^2 + v^2)}^2
设p = (mu + nv)/(u^2 + v^2),q = (mv - nu)/(u^2 + v^2),
则p,q为有理数,且s/t=p²+q².
则s = m^2 + n^2,t = u^2 + v^2,其中m,n,u,v∈Z.
那么st = (m^2 + n^2)(u^2 + v^2) = (mu + nv)^2 + (mv - nu)^2,
其中mu + nv∈Z.,mv - nu∈Z.
所以st∈S
2.若s,t∈S,t ≠0,
仍设s = m^2 + n^2,t = u^2 + v^2,其中m,n,u,v∈Z.
因为t ≠0,故u,v不同时为零.
则s/t = st/t^2 = (m^2 + n^2)(u^2 + v^2)/(u^2 + v^2)^2
= ((mu + nv)^2 + (mv - nu)^2)/(u^2 + v^2)^2
= {(mu + nv)/(u^2 + v^2)}^2 + {(mv - nu)/(u^2 + v^2)}^2
设p = (mu + nv)/(u^2 + v^2),q = (mv - nu)/(u^2 + v^2),
则p,q为有理数,且s/t=p²+q².
已知S是两个整数平方和的集合,即S={X|X=M²+N²,M∈Z,n∈Z}.求证:
高一一道证明题已知S是两个整数平方和的集合,即S={x|x=m^2+n^2},m、n∈Z求证:1、若s、t∈S,则st∈
已知S是两个整数平方和组成的集合,即S={x|x=m2+n2,m,n属于Z} 求证:若s,t属于S,则s乘以t属于S
设集合A={x|x=m^2+n^2,m,n in Z}即集合A是由所有能够写成两个整数的平方和的整数的集合.求证:若s,
己知S是两个整数平方和,即S={x丨x=m平方+n平方,m属于Z,n属于Z}
若集合A={x│x=m²-n²,m∈Z,n∈Z}
设A是两个整数平方差的集合,即A{X |X=m^2-n^2,m,n∈z} 证明:若s,t∈A,t≠0,则s/t=p^2-
设A是两个整数平方差的集合,即A{X |X=m^2-n^2,m,n∈z}证明;若S,t∈A,则st∈A
已知集合{x|x=m+n根号2,m、n∈Z},求证:任何整数都是A中的元素.
已知集合M={x|x=a²+1,a∈Z},N={y|y=a²-4a+5,a∈Z},则集合M与N的关系
设A是两个整数平方差的集合,即A=m²-n²,m,n∈Z
已知集合S={x|x=m2+n2,m,n∈Z},求证:若a,b∈S,则ab∈S.