设3阶实对称矩阵A的特征值为-1,1,1,-1对应的特征向量为(0,1,1)的转置,求A.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 05:24:43
设3阶实对称矩阵A的特征值为-1,1,1,-1对应的特征向量为(0,1,1)的转置,求A.
亲,谁会教教我!
亲,谁会教教我!
设属于特征值1的特征向量为(x1,x2,x3)^T
由于实对称矩阵属于不同特征值的特征向量正交
故(x1,x2,x3)^T与a1=(0,1,1)^T正交.
即有 x2+x3=0.
得基础解系:a2=(1,0,0)^T,a3=(0,1,-1)^T
令P=(a2,a3,a1) =
1 0 0
0 1 1
0 -1 1
则 P^-1AP = diag(1,1,-1).
所以 A = Pdiag(1,1,-1)P^-1=
1 0 0
0 0 -1
0 -1 0
由于实对称矩阵属于不同特征值的特征向量正交
故(x1,x2,x3)^T与a1=(0,1,1)^T正交.
即有 x2+x3=0.
得基础解系:a2=(1,0,0)^T,a3=(0,1,-1)^T
令P=(a2,a3,a1) =
1 0 0
0 1 1
0 -1 1
则 P^-1AP = diag(1,1,-1).
所以 A = Pdiag(1,1,-1)P^-1=
1 0 0
0 0 -1
0 -1 0
设3阶实对称矩阵A的特征值为-1,1,1,-1对应的特征向量为(0,1,1)的转置,求A.
设3阶实对称矩阵A的特征值为-1,1,1,-1对应的特征向量为(0,1,1)的转置,求A
实对称矩阵 特征值设A是3阶实对称矩阵 启特征值为1,1,-1,且对应的特征向量为a=(1,1,1)b=(2,2,1)求
设3阶对称矩阵A有特征值2,1,1,对应于2的特征向量为a1=(1;-2;2),求矩阵A
设三阶对称矩阵A的特征值为3、6、6,与特征值3对应的特征向量为P1=(1 1 1)T,求矩阵A
设6,3,3为实对称矩阵A的特征值,A的对应于3的特征向量为a1=(-1,0,1)T,a2=(1,2,1)T,求矩阵A
设A为可逆矩阵,λ为A的一个特征值,对应的特征向量为ζ,求:(1)A*的一个特征值及对应的特征向量
线性代数:设3阶实对称矩阵A的特征值为a1=-1,a2=a3=1,对应于a1的特征向量为b1=(0,0,1)T,求矩阵A
已知3阶实对称矩阵A的3个特征值为1,-1,0,以及1,-1对应的特征向量如何求A.
设3阶实对称矩阵A的特征值为-1,1,1,属于特征值-1的特征向量为a=[0 1 1]^t.
已知三阶实对称矩阵A的特征值为0.1.1,0对应的特征向量为(0,1,1)T,求特征值1对应的特征向量和矩阵A
已知3阶实对称矩阵A的3个特征值a1=0,a2=a3=2,且特征值0对应的特征向量为(1,0,-1)^T,求矩阵A