已知向量A=(cosx,sinx) B=(2cosx,2cosx)函数f(x)=A*B
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 06:41:26
已知向量A=(cosx,sinx) B=(2cosx,2cosx)函数f(x)=A*B
(1)求|A|及f(π/24)的值 (2)在锐角▷ABC中 abc分别是ABC的对边,且F(C+π/24)=1,c=4,ab=3,求▷ABC的周长
(1)求|A|及f(π/24)的值 (2)在锐角▷ABC中 abc分别是ABC的对边,且F(C+π/24)=1,c=4,ab=3,求▷ABC的周长
已知向量A=(cosx,sinx) B=(2cosx,2cosx)函数f(x)=A•B;(1)求|A|及f(π/24)的值 (2)在锐角
△ABC中 a,b,c分别是A,B,C的对边,且f(C+π/24)=1,c=4,ab=3,求△ABC的周长
(1) ︱A︱=√(cos²x+sin²x)=1;
f(x)=A•B=2cos²x+2sinxcosx=1+cos2x+sin2x=1+(√2)cos(2x-π/4)
故f(π/24)=1+(√2)cos(π/12-π/4)=1+(√2)cos(-π/6)=1+(√2)(√3/2)=1+(√6)/2=(2+√6)/2
(2)f(C+π/24)=1+(√2)cos[2(C+π/24)-π/4]=1+(√2)cos(2C-π/6)=1
故得cos(2C-π/6)=0,2C-π/6=π/2,2C=2π/3,∴C=π/3.
ab=3.(1)
由余弦定理得:
c²=16=a²+b²-2abcos60°=(a+b)²-2ab-ab=(a+b)²-3ab=(a+b)²-9
故(a+b)²=25,∴a+b=5
∴△ABC的周长L=a+b+c=4+5=9
△ABC中 a,b,c分别是A,B,C的对边,且f(C+π/24)=1,c=4,ab=3,求△ABC的周长
(1) ︱A︱=√(cos²x+sin²x)=1;
f(x)=A•B=2cos²x+2sinxcosx=1+cos2x+sin2x=1+(√2)cos(2x-π/4)
故f(π/24)=1+(√2)cos(π/12-π/4)=1+(√2)cos(-π/6)=1+(√2)(√3/2)=1+(√6)/2=(2+√6)/2
(2)f(C+π/24)=1+(√2)cos[2(C+π/24)-π/4]=1+(√2)cos(2C-π/6)=1
故得cos(2C-π/6)=0,2C-π/6=π/2,2C=2π/3,∴C=π/3.
ab=3.(1)
由余弦定理得:
c²=16=a²+b²-2abcos60°=(a+b)²-2ab-ab=(a+b)²-3ab=(a+b)²-9
故(a+b)²=25,∴a+b=5
∴△ABC的周长L=a+b+c=4+5=9
已知向量A=(cosx,sinx) B=(2cosx,2cosx)函数f(x)=A*B
已知向量a=(cosx,sinx),b=(-cosx,cosx),函数f(x)=2a*b+1
已知向量a=(cosx,sinx),向量b=(cosx-sinx,2cosx),设f(x)=向量a乘于向量b.⑴求函数f
已知向量a=(sinx,sinx+cosx)b=(2cosx,cosx-sinx),设f(x)=a*b
已知向量a=(根号3cosx,cosx),b=(sinx,2cosx),记函数f(x)=2*向量a*向量b-2*|向量b
已知向量a=(5根号3cosx,cosx),b=(sinx,2cosx),记函数f(x)=向量a*向量b+|向量b|^2
一道向量题,已知:向量a=(2cosx,2sinx),向量b=(cosx,√3cosx)函数f(x)=向量a×向量b.(
已知向量a=(cosx+sinx,sinx),b=(cosx-sinx,-2cosx),设f(x)=a*b 求函数f(x
已知向量a=(2根号3sinx,cosx+sinx),b=(cosx,cosx-sinx),函数f(x)=a·b,求f(
已知向量a=(2根号3sinx,cosx+sinx),b=(cosx,cosx-sinx),函数f(x)=a·b .若f
已知函数向量a=(2cosx,√3sinx),向量b=(cosx,2cosx)...
已知函数f(x)=向量a*向量b,其中向量a=(2cosx,根号3sinx),向量b=(cosx,-2cosx)