在三角形ABC中,a=60度,且最大边与最小边是方程x^2-7x+11=0的两个实数根,则三角形ABC的周长为?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 12:19:24
在三角形ABC中,a=60度,且最大边与最小边是方程x^2-7x+11=0的两个实数根,则三角形ABC的周长为?
根据方程可求出最大边和最小边分别为:X1=(7+√ 5)/2和X2=(7-√ 5)/2,而a=60度可知另外两个角一定有一个比角a大和一个比角a小,即根据a^2 = b^2 + c^2 - 2·b·c·cosA 可推出:
a^2 =X1^2 + X2^2 - 2·X1^2·X2^2·cos60度,可得a=4,所以三角形周长D=X1 + X2 + a=11
故三角形ABC周长为11.
希望对你有帮助,^_^
再问: 为什么?而a=60度可知另外两个角一定有一个比角a大和一个比角a小呢?
再答: 180-60=120对不对,而题目说有最大边和最小边,所以不可能是等边三角形,对吧!那么120不能是B =C= 60,是吧!那么B+C=120,且B、C不相等,是不是一个比60大,一定有另一个角比60小,因为B、C的和是120啊,对吧,现在明白了吗?^_^
a^2 =X1^2 + X2^2 - 2·X1^2·X2^2·cos60度,可得a=4,所以三角形周长D=X1 + X2 + a=11
故三角形ABC周长为11.
希望对你有帮助,^_^
再问: 为什么?而a=60度可知另外两个角一定有一个比角a大和一个比角a小呢?
再答: 180-60=120对不对,而题目说有最大边和最小边,所以不可能是等边三角形,对吧!那么120不能是B =C= 60,是吧!那么B+C=120,且B、C不相等,是不是一个比60大,一定有另一个角比60小,因为B、C的和是120啊,对吧,现在明白了吗?^_^
在三角形ABC中,a=60度,且最大边与最小边是方程x^2-7x+11=0的两个实数根,则三角形ABC的周长为?
三角形ABC中,a =60°,最大边与最小边是方程x²-11x+8=0的两个实数根,则三角形ABC的面积等于
三角形ABC中,A=60°,A=60°,最大边与最小边是方程x²-11x+8=0的两个正实数根,求三角形面积
在三角形ABC中 角A=60 且最大边长和最小边长是方程 X的平方-7X+11=0的两个根 则第三边的长为
已知三角形abc中,∠A=60°,最大边和最小边是方程3x^2-27x+32=0的两个实数根,求三角形的面积.
在三角形ABC中,三个角满足2A=B+C,且最大边与最小边分别是方程3X^ -27X+32=0的两根则三角形外接圆面积为
在三角形ABC中,三个角满足2A=B+C,且最大边与最小边分别是方程3x^2-27+32=0的两个根
在三角形ABC中,A=60度,B>C,b,c是方程x^2-2倍根号3x+m=0的两个实数根,三角形ABC的面积为根号3/
在ΔABC中,已知∠A=60度,最大边最小边是方程x^2-7x+11=0的两根,求此三角形的第三边?
在三角形ABC中,角A等于60度,最大边喝最小边是方程x^2-7x+11=0的两根,求第三边,
会正、余弦定理的来已知三角形ABC中角A=60度,且最大边与最小边的长是方程3x方-27x+32=0的两实根,那么BC边
在三角形ABC中,A=60°,最大边与最小边是方程3x2-27+32=0的两个实根,那么BC是?