经过点P(0,2)作直线L交椭圆C:x^2/2+y^2=1于A.B两点,若三角形ABC的面积为2/3,求直线L的方程?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 20:59:36
经过点P(0,2)作直线L交椭圆C:x^2/2+y^2=1于A.B两点,若三角形ABC的面积为2/3,求直线L的方程?
经过P(2,0)作直线L交椭圆C:x^2/2+y^2=1于A,B两点若三角形AOB的面积为2/3求直线
设直线方程为y=k(x-2)=kx-2k,代入椭圆方程得:
x²+2(kx-2k)²-2=0,展开化简得:
(1+2k²)x²-8k²x+8k²-2=0
设直线与椭圆的交点A(x₁,y₁);B(x₂,y₂);依韦达定理有:
x₁+x₂=8k²/(1+2k²);x₁x₂=(8k²-2)/(1+2k²);
y₁+y₂=kx₁-2k+kx₂-2k=k(x₁+x₂)-4k=8k³/(1+2k²)-4k=-4k/(1+2k²)
y₁y₂=(kx₁-2k)(kx₂-2k)=k²x₁x₂-2k²(x₁+x₂)+4k²=k²[(8k²-2)/(1+2k²)-16k²/(1+2k²)+4]
=k²[2/(1+2k²)]=2k²/(1+2k²)
弦长︱AB︱=√[(x₁+x₂)²+(y₁+y₂)²-4(x₁x₂+y₁y₂)]
=√[64k⁴/(1+2k²)²+16k²/(1+2k²)²-4(8k²-2)/(1+2k²)-8k²/(1+2k²)]
=√[(-16k⁴-8k²+8)/(1+2k²)²]=[2/(1+2k²)]√(-4k⁴-2k²+2)
椭圆中心(0,0)到直线kx-y-2k=0的距离h=︱-2k︱/√(1+k²)
△AOB的面积S=(1/2)︱AB︱h=[︱2k︱√(-4k⁴-2k²+2)]/[(1+2k²)√(1+k²)]=2/3
3[︱k︱√(-4k⁴-2k²+2)]=(1+2k²)√(1+k²)
9k²(-4k⁴-2k²+2)=(1+2k²)²(1+k²)
展开化简得 40k^6+26k⁴-13k²+1=0.(1)
解方程(1),得实根k=±1/2,故直线方程为y=±(1/2)(x-2).
设直线方程为y=k(x-2)=kx-2k,代入椭圆方程得:
x²+2(kx-2k)²-2=0,展开化简得:
(1+2k²)x²-8k²x+8k²-2=0
设直线与椭圆的交点A(x₁,y₁);B(x₂,y₂);依韦达定理有:
x₁+x₂=8k²/(1+2k²);x₁x₂=(8k²-2)/(1+2k²);
y₁+y₂=kx₁-2k+kx₂-2k=k(x₁+x₂)-4k=8k³/(1+2k²)-4k=-4k/(1+2k²)
y₁y₂=(kx₁-2k)(kx₂-2k)=k²x₁x₂-2k²(x₁+x₂)+4k²=k²[(8k²-2)/(1+2k²)-16k²/(1+2k²)+4]
=k²[2/(1+2k²)]=2k²/(1+2k²)
弦长︱AB︱=√[(x₁+x₂)²+(y₁+y₂)²-4(x₁x₂+y₁y₂)]
=√[64k⁴/(1+2k²)²+16k²/(1+2k²)²-4(8k²-2)/(1+2k²)-8k²/(1+2k²)]
=√[(-16k⁴-8k²+8)/(1+2k²)²]=[2/(1+2k²)]√(-4k⁴-2k²+2)
椭圆中心(0,0)到直线kx-y-2k=0的距离h=︱-2k︱/√(1+k²)
△AOB的面积S=(1/2)︱AB︱h=[︱2k︱√(-4k⁴-2k²+2)]/[(1+2k²)√(1+k²)]=2/3
3[︱k︱√(-4k⁴-2k²+2)]=(1+2k²)√(1+k²)
9k²(-4k⁴-2k²+2)=(1+2k²)²(1+k²)
展开化简得 40k^6+26k⁴-13k²+1=0.(1)
解方程(1),得实根k=±1/2,故直线方程为y=±(1/2)(x-2).
经过点P(0,2)作直线L交椭圆C:x^2/2+y^2=1于A.B两点,若三角形ABC的面积为2/3,求直线L的方程?
经过P(2,0)作直线L交椭圆C:x^2/2+y^2=1于A,B两点若三角形AOB的面积为2/3求直线
经过P点(0,2)作直线l交椭圆C:x²/2+y²=1于A,B两点(1)若△AOB的面积为2/3,求
1`过点P(0,2)的直线L交椭圆x^2+2y^2=2于A,B两点,使三角形AOB的面积为2/3,求直线方程
过点P(0,2)作直线交椭圆X^2/2+Y^2=1于A、B两点,O为原点.当三角形AOB面积为2/3时,求直线的方程
过椭圆x^2/2+y^2=1的一个焦点F作直线l交椭圆于A,B两点,中心为O当三角形AOB面积最大时,求直线l的方程
过椭圆x^2+4y^2=16内一点P(1,1)作一直线l,交椭圆于A,B两点,若线段AB恰好被点P平分,求直线l的方程
直线的两点式方程直线L过点P(3,2)且与X轴,Y轴正半轴分别交于A,B两点,求三角形ABC面积最小时直线L的方程..
过点P(0,1)的直线L与圆x^2+y^2=25交于A,B两点,若三角形AOB的面积为3.5,求直线L方程.
过点P(2,1)作直线l,分别交x轴y轴于A,B两点,当三角形AOB的面积为4时,求直线l的方程
过点P(0,2)作直线交椭圆X^2/2+Y^2=1于A、B两点,O为原点.当三角形AOB面积取最大值时,求直线的方程
已知P(1,1)为椭圆X^2/4+Y^2/3=1内一点,过点P作直线L交椭圆与A、B两点,若点P为线段AB的中点,求L的