已知抛物线y=x^2+(m-1)x-m经过(-2,-3),并且与x轴交于A、B两点(点A在点B的左侧),交y轴与点C.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 01:32:20
已知抛物线y=x^2+(m-1)x-m经过(-2,-3),并且与x轴交于A、B两点(点A在点B的左侧),交y轴与点C.
(1)求抛物线的解析式;
(2)设经过A、B的两点的圆(AB不是直径)与AC交于点E,与直线y=x+3交于点F(点F不在x轴上),试判断△BEF的形状,并说明理由.
(1)求抛物线的解析式;
(2)设经过A、B的两点的圆(AB不是直径)与AC交于点E,与直线y=x+3交于点F(点F不在x轴上),试判断△BEF的形状,并说明理由.
把(-2,-3)代入抛物线方程得 4-2(m-1)-m=-3 解得m=3
所以抛物线解析式为y=x²+2x-3
令y=0,得AB两点的坐标分别为(-3,0)与(1,0)
首先直线y=x+3过点A,与y轴交于点(0,3),直线AC方程为y=-x+3,
由OA=0C=OD=3可知,△ACD为等腰直角△,根据圆上三点形成直角的直角对边为直径这一定理可知,EF为圆的直径,所以△BEF必为直角△
令E点坐标为(k,-k+3)因为EF过圆心且圆心横坐标为-3+1/2=-1,所以对点F横坐标有1/2(XF+k)=-1即XF=-2-k,故点F坐标为(-2-k,1-k)
BE²=(1-k)²+(3-k)²,BF²=(1+2-k)²+(1-k)²,显然有BE=BF,所以△BEF为等腰直角三角形
所以抛物线解析式为y=x²+2x-3
令y=0,得AB两点的坐标分别为(-3,0)与(1,0)
首先直线y=x+3过点A,与y轴交于点(0,3),直线AC方程为y=-x+3,
由OA=0C=OD=3可知,△ACD为等腰直角△,根据圆上三点形成直角的直角对边为直径这一定理可知,EF为圆的直径,所以△BEF必为直角△
令E点坐标为(k,-k+3)因为EF过圆心且圆心横坐标为-3+1/2=-1,所以对点F横坐标有1/2(XF+k)=-1即XF=-2-k,故点F坐标为(-2-k,1-k)
BE²=(1-k)²+(3-k)²,BF²=(1+2-k)²+(1-k)²,显然有BE=BF,所以△BEF为等腰直角三角形
已知抛物线y=x^2+(m-1)x-m经过(-2,-3),并且与x轴交于A、B两点(点A在点B的左侧),交y轴与点C.
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
如图如图,已知抛物线的顶点坐标M(1,4),该抛物线交X轴于A,B两点(点A在点B的左侧),与y轴交与点C,且OC=3
已知抛物线方程y=a(x+1)^2+c(a>0)与X轴交于A、B两点(A在B左侧),与Y轴交于点C,顶点M
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴
如图,抛物线的顶点坐标M(1,4).且过点N(2,3),于X轴交于A,B两点(点A在点B左侧).与Y轴交于点C.
已知,如图,抛物线Y=ax^2+3ax+c【a>0】与Y轴交于C点,与X轴交于A,B两点,A点在B点左侧 点B的坐标为【
已知抛物线的顶点坐标为M(1.4),且经过N(2.3).与X轴交于A.B两点(点A在点B左侧),与Y轴交与点C
如图,已知抛物线y=-3/4x^2+9/4x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C (1)求A,B,C
如图,抛物线y=-x²-x+2与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,它的顶点为M
如图,已知抛物线y=1/2x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=2OA=4
如图,已知抛物线的顶点坐标为M(1,4)与y轴交于点C(0,3)与x轴交于A、B两点(点A在b的左侧)