已知函数f(x)=x^4-4x^3+ax^2-1在区间[0,1]上单调增,在区间[1,2]上单调减
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 15:09:01
已知函数f(x)=x^4-4x^3+ax^2-1在区间[0,1]上单调增,在区间[1,2]上单调减
(1)求a的值(2)设g(x)=bx^2-1,若方程f(x)=g(x)解集恰好有3个元素,求b的范围(3)在(2)的条件下,是否存在实数对(m,n),使f(x-m)+g(x-n)为偶函数?如存在,求出m,n;如不存在,说明理由。前两问我会,
(1)求a的值(2)设g(x)=bx^2-1,若方程f(x)=g(x)解集恰好有3个元素,求b的范围(3)在(2)的条件下,是否存在实数对(m,n),使f(x-m)+g(x-n)为偶函数?如存在,求出m,n;如不存在,说明理由。前两问我会,
f(x)在x=1取得极大值
于是f'(1)=0
所以f'(1)=4-12+2a=2a-8 =0
所以a=4
2)函数 g( x)=bx^2-1的图象与函数 f( x)的图象恰有 3个交点,
等价于方程 x^4-4x^3+ 4x^2-1=bx^2-1,
即 x^4-4x^3+( 4- b) x^2=0 ①恰有 3个不等的实根.
即把函数图象的交点问题转化为方程的根的个数问题
方程①可化为 x^ 2〔 x^ 2-4x+( 4- b)〕=0
于是 x=0为方程①的一个根,
方程 x2-4x+4- b=0 ②应有两个不相等的非零实根,其需要条件是
△=16-4( 4- b) >0,
0<b<4
于是f'(1)=0
所以f'(1)=4-12+2a=2a-8 =0
所以a=4
2)函数 g( x)=bx^2-1的图象与函数 f( x)的图象恰有 3个交点,
等价于方程 x^4-4x^3+ 4x^2-1=bx^2-1,
即 x^4-4x^3+( 4- b) x^2=0 ①恰有 3个不等的实根.
即把函数图象的交点问题转化为方程的根的个数问题
方程①可化为 x^ 2〔 x^ 2-4x+( 4- b)〕=0
于是 x=0为方程①的一个根,
方程 x2-4x+4- b=0 ②应有两个不相等的非零实根,其需要条件是
△=16-4( 4- b) >0,
0<b<4
已知函数f(x)=x^4-4x^3+ax^2-1在区间[0,1]上单调增,在区间[1,2]上单调减
已知函数f(x)=x^4-4x^3+ax^2-1在区间[0,1]上单调递增,在区间[1,2]上单调递减.
已知函数f(x)=x⁴-4x³+ax²-1在区间[0,1]上单调递增,在区间[1,2]上
已知函数f(x)=x^3+ax^2+bx+c (1)若函数f(x)在区间【-1,0】上是单调减函数,求
已知函数f(x)=x的四次方-4x的三次方+ax的平方-1在区间[0,1]上单调递增,在区间[1,2]上单调递减.
已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2]上单调递减.
函数f(x)=x^4-4x^3+ax^2-1在区间[0,1]上单调递增,在区间[1,2]上单调递减.1 求a的值 2.求
已知a>1/2,求证:函数f(x)=(ax+1)/(x+2)在区间(-2,+00)上单调递增
已知函数f(x)=lg(ax+a-2/x)在区间(1,2)上单调递增
已知函数f(x)=-1/4x^4+2/3x^3+ax^2-2x-2在区间[-1,1]上单调递减,在[1,2]上单调递增,
已知函数f(x)=-1/4x^4+2/3x^3+ax^2-2x-2在区间[-1,1]上单调递减,在[1,2]上单调递增
已知函数f(x)=ax³/3-x²/2-x(a≥0)在区间(0,1)上不是单调函数,则实数a的取值范