P为等腰直角三角形ABC斜边AB上任意一点,PE垂直于AC,PF垂直于BC,PG垂直于EF,延长GP使得PD=PC.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 06:47:45
P为等腰直角三角形ABC斜边AB上任意一点,PE垂直于AC,PF垂直于BC,PG垂直于EF,延长GP使得PD=PC.
求证:BC垂直于BD,且BC=BD
求证:BC垂直于BD,且BC=BD
将三角形ABC沿AB边翻折,使C点落在D'点处.易证四边形ACBD'为正方形.
且由翻折知PD'=PC.
因为角CFP=角CBD'=90度,所以FP//BD'.
从而角FPG=角BD'G.易证角PEF=角PCF=角BD'G,所以角FPG=角PEF.
而角PEF+角PFE=90度,所以角FPG+角PFE=90度.所以D'G垂直EF.
而D'落在GP的延长线上,所以D'与D重合.
在正方形ACBD内可知BC垂直BD,BC=BD.
参考:
证明:因为PF⊥CB,
所以PH//AC,
所以/_FBP=/_A=45度.
又因为/_GPF+/_FPB+/_BPD=180度
所以/_GPF+/_BPD=135度
又因为PE⊥AC,
所以PE//CB,
所以/_APE=/_ABC=45度
又因为/_APE+/_EPC+/_CPB=135度
又因为PG⊥EF,
所以/_EPG=/_CPF,
所以/_EPC=/_GPF.
所以/_CPB=/_DPB.
又因为CP=DP,
BP=BP,
所以三角形CBP和三角形DPB全等,
所以/_DBP=/_CBP=45度,BC=BD
所以/_CBD=90度,
即BC⊥BD,
(PS:/_ 是 角 的意思)
参考:
可以作PM⊥DB.
∵ABC为等腰三角形
∴AC⊥BC,∠ABC =∠A=45度
∵PE⊥AC,PE⊥BC
∴EPCF为矩形
∴PC=EF,∠EPF=90度,EP=CF
∵∠EPG=∠DPM,∠PGE=∠PMD=90度
∴∠PEG=∠D
可证三角形PEF与DPM全等
∴EP=DN
∴CF=DM
∵∠ABV=45度
∴PF=FB
∴四边形PMFB为正方形
则DB⊥BC,BF=BM
∵BC=CF+BF,BD=BM+MD
∴BC=BD
且由翻折知PD'=PC.
因为角CFP=角CBD'=90度,所以FP//BD'.
从而角FPG=角BD'G.易证角PEF=角PCF=角BD'G,所以角FPG=角PEF.
而角PEF+角PFE=90度,所以角FPG+角PFE=90度.所以D'G垂直EF.
而D'落在GP的延长线上,所以D'与D重合.
在正方形ACBD内可知BC垂直BD,BC=BD.
参考:
证明:因为PF⊥CB,
所以PH//AC,
所以/_FBP=/_A=45度.
又因为/_GPF+/_FPB+/_BPD=180度
所以/_GPF+/_BPD=135度
又因为PE⊥AC,
所以PE//CB,
所以/_APE=/_ABC=45度
又因为/_APE+/_EPC+/_CPB=135度
又因为PG⊥EF,
所以/_EPG=/_CPF,
所以/_EPC=/_GPF.
所以/_CPB=/_DPB.
又因为CP=DP,
BP=BP,
所以三角形CBP和三角形DPB全等,
所以/_DBP=/_CBP=45度,BC=BD
所以/_CBD=90度,
即BC⊥BD,
(PS:/_ 是 角 的意思)
参考:
可以作PM⊥DB.
∵ABC为等腰三角形
∴AC⊥BC,∠ABC =∠A=45度
∵PE⊥AC,PE⊥BC
∴EPCF为矩形
∴PC=EF,∠EPF=90度,EP=CF
∵∠EPG=∠DPM,∠PGE=∠PMD=90度
∴∠PEG=∠D
可证三角形PEF与DPM全等
∴EP=DN
∴CF=DM
∵∠ABV=45度
∴PF=FB
∴四边形PMFB为正方形
则DB⊥BC,BF=BM
∵BC=CF+BF,BD=BM+MD
∴BC=BD
P为等腰直角三角形ABC斜边AB上任意一点,PE垂直于AC,PF垂直于BC,PG垂直于EF,延长GP使得PD=PC.
设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其
等腰三角形ABC中,P为斜边AB上一点,PE垂直AC,PF垂直BC,连EF,PG垂直EF,BD平行AC与GP延长线交于D
如图所示 在等腰直角三角形abc中,P是斜边上一点,PE垂直于AB,Pf垂直于AC,
如图,p为等边三角形abc内任意一点,pe垂直ab于e,pf垂直bc于f,pg垂直ac于g,ad垂直bc于d求证ad=p
数学题在线解答等腰直角三角形ABC斜边BC任意一点P过点P做PD垂直于AB,PE垂直于AC于点E连结PE交于点N连结CD
如图,P为等边三角形ABC内任意一点,PD垂直AB于D,PE垂直BC于E,PF垂直AC于F.求PD+PE+PF是定值
设点P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点
在三角形ABC中 AB=AC P为底边BC上一点 PE垂直于AB PF垂直于AC BD垂直于AC
等腰三角形ABC中,D为斜边BC中点,P为BC上任意一点,且PE垂直AB,PF垂直AB于F,求证:DE等于DF
已知:等腰△ABC中,底边BC上有任意一点P,PD⊥AB于D,PE⊥AC于E,CF垂直AB于F,求证:
如图,P是等腰Rt△ABC的斜边AC上一点,PE⊥AB于点E,PE⊥于AB于点F,PG⊥EF于点G,在GP延长线上取一点