1、已知:如图1,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明 成
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/06 03:43:05
1、已知:如图1,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明 成立
证明:(1)∵AB∥EF
∴ EF/AB=DF/DB
∵CD∥EF
∴ EF/CD=BF/DB
∴ EF/AB+EF/CD=DF/DB+BF/DB= DB/DB=1
∴ 1/AB+1/CD=1/EF;
(2)关系式为:1/S△ABD+1/S△BDC=1/S△BED
证明如下:分别过A作AM⊥BD于M,过E作EN⊥BD于N,过C作CK⊥BD交BD的延长线于K
由题设可得:1/AM+1/CK=1/EN
∴ 2/BD•AM+2/BD•CK= 2/BD•EN
即 1/1/2•BD•AM+1/1/2•BD•CK
又∵ 1/2•BD•AM=S△ABD,1/2•BD•CK=S△BCD
∴ 1/2•BD•EN=S△BCD
∴ 1/S△ABD+1/S△BDC=1/S△BED.
∴ EF/AB=DF/DB
∵CD∥EF
∴ EF/CD=BF/DB
∴ EF/AB+EF/CD=DF/DB+BF/DB= DB/DB=1
∴ 1/AB+1/CD=1/EF;
(2)关系式为:1/S△ABD+1/S△BDC=1/S△BED
证明如下:分别过A作AM⊥BD于M,过E作EN⊥BD于N,过C作CK⊥BD交BD的延长线于K
由题设可得:1/AM+1/CK=1/EN
∴ 2/BD•AM+2/BD•CK= 2/BD•EN
即 1/1/2•BD•AM+1/1/2•BD•CK
又∵ 1/2•BD•AM=S△ABD,1/2•BD•CK=S△BCD
∴ 1/2•BD•EN=S△BCD
∴ 1/S△ABD+1/S△BDC=1/S△BED.
1、已知:如图1,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明 成
已知,如图1,AB⊥BD,CD⊥BD,垂直分别为B、D,AD和BC交于点E,EF⊥BD,垂足为F,我们可以证明1/AB+
如图a,AB⊥BD,CD⊥BD,垂足分别为B,D,AD和BC相交于点E,EF⊥BD于F,证明1/AB+1/CD=1/EF
已知:AB垂直于BD,CD垂直于BD,垂足分别为B和D,AD和 BC相交于点E,EF垂直于BD,垂足为F,我们可以证明1
已知:AB垂直于BD,CD垂直于BD,垂足分别为B和D,AD和 BC相交于点E,EF垂直于BD,垂足为F,我们可以证明
已知如图 ,AB=AC,DB⊥AC,CE⊥AB,垂足分别为D,E,BD,CE相交于点F,求证:BE=CD
相似三角形 1.已知,如图,AB⊥BD于B,CD⊥BD于D,连接AD、BC它们相交于E,EF⊥BD于F,求证:AB分之一
如图所示,在平行四边形ABCD中,AC、BD相交于点O,EF⊥BD,垂足为O,EF分别交AD、BC于点E、F,且AE=E
已知:如图,在正方形ABCD中,对角线AC、BD相交于点O,E是AB上任意一点,EG⊥AC,EF⊥BD,垂足分别为G、F
如图,AB⊥ BD ,CD ⊥ BD垂足分别为点 B,D ,∠ A + AEF=180°求证 CD 平行EF
如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BF与CD相交于点O,且∠1=∠2,试说出BD=CE成立的理由.
已知;如图,点B、C分别在角MAN的两边上,BD⊥AM,CE⊥AN,垂足分别为D、E,BD、CE相交于点F,且BF=CF