b^2c^2+c^2a^2+A^2b^2>=abc(a+b+c)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 16:37:38
b^2c^2+c^2a^2+A^2b^2>=abc(a+b+c)
a,b,c>0.因为a^2b^2+b^2c^2=b^2(a^2+c^2)>=2acb^2,同理有b^2c^2+c^2a^2>=2abc^2,c^2a^2+a^2b^2>=2bca^2;故三式相加得2(a^2b^2+b^2c^2+c^2a^2)>=2(abc^2+acb^2+bca^2)=2abc(a+b+c)---> (a^2b^2+b^2c^2+c^2a^2)/(a+b+c)>=abc
b^2c^2+c^2a^2+A^2b^2>=abc(a+b+c)
b^2c^2+c^2a^2+A^2b^2>=abc(a+b+c)
行列式证明|b+c c+a a+b| | a b c||a+b b+c c+a| = 2 |c a b||c+a a+b
化简(2a-b-c)/(a+b)(a-c)+(2b-c-a)/(b-c)(b-a)+(2c-a-b)/(c-b)(c-a
(a+b)/(a-b)=(b+c)/2(b-c)=(c+a)/3(c-a),abc互不相等,证8a+9b+5c=o
在三角形ABC中,求证 a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)
b^2c^2+c^2a^2+A^2b^2>=abc(a+b+c)
a、b、c互不相等,则2a-b-c/(a-b)(a-c)+2b-c-a/(b-c)(b-a)+2c-a-b/(c-a)(
(a-b)(b-c)(c-a)/(b-a)(a-c)2(c-b)3
计算(a-b)(a-c)/(a+b-2c)(a+c-2b)+(b-c)(b-a)/(b+c-2a)(b+a-2c)+(c
计算a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2+(b+c-a)(c+a-b)(a+b-c)
化简:2a-b-c/(a-b)(a-c) + 2b-a-c/(b-c)(b-a) + 2c-a-b/(c-b)(c-a)
为什么[(a+b)^2-c^2)][(a-b)^2-c^2)]=(a+b+c)(a+b-c)(a-b+c)(a-b-c)
已知a,b,c是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a+b)