如实数x,y满足x^2+y^2+2x-4y+1=0,求下列各式的最大值与最小值
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 02:57:55
如实数x,y满足x^2+y^2+2x-4y+1=0,求下列各式的最大值与最小值
1)y/x 2)2x+y 3) y/(x-4)
没有时间
急
1)y/x 2)2x+y 3) y/(x-4)
没有时间
急
x^2+y^2+2x-4y+1=0
即(x+1)²+(y-2)²=4
表示以C(-1,2)为圆心2为半径的圆
1)
设y/x=t,则直线tx-y=0与圆C有公共点
C到直线的距离d=|-t-2|/√(t²+1)≤2
∴(-t-2)²≤4(t²+1)
即3t²-4t≤0
解得0≤t≤≤4/3
即y/x的最大值为4/3,最小值为0
2)
2x+y =t,到C的距离
d=|-2+2-t|/√5≤2
∴|t|≤2√5
∴2x+y的最大值为2√5最小值为-2√5
3) y/(x-4)
P(x,y)为圆C上动点,A(4,0)
∴y/(x-4)=kPA
过A向圆C引切线,一条为x轴,切点为T(-1,0)
另一条切线l切点为S
∴tan∠CAT=2/5
tan∠SAT=(2*2/5)/(1-4/25)=20/21
∴l的斜率k=-20/21
∴-20/21≤y/(x-4)≤0
即(x+1)²+(y-2)²=4
表示以C(-1,2)为圆心2为半径的圆
1)
设y/x=t,则直线tx-y=0与圆C有公共点
C到直线的距离d=|-t-2|/√(t²+1)≤2
∴(-t-2)²≤4(t²+1)
即3t²-4t≤0
解得0≤t≤≤4/3
即y/x的最大值为4/3,最小值为0
2)
2x+y =t,到C的距离
d=|-2+2-t|/√5≤2
∴|t|≤2√5
∴2x+y的最大值为2√5最小值为-2√5
3) y/(x-4)
P(x,y)为圆C上动点,A(4,0)
∴y/(x-4)=kPA
过A向圆C引切线,一条为x轴,切点为T(-1,0)
另一条切线l切点为S
∴tan∠CAT=2/5
tan∠SAT=(2*2/5)/(1-4/25)=20/21
∴l的斜率k=-20/21
∴-20/21≤y/(x-4)≤0
如实数x,y满足x^2+y^2+2x-4y+1=0,求下列各式的最大值与最小值
实数x,y满足x^2+y^2+2x-4y+1=0,求下列各式的最大值和最小值
实数x,y满足x^2+y^2+2x-4y+1=0,求下列各式的最大值和最小值 (1)y/x(2)2x+y(3)y/x+4
实数x.y满足x^2+y^2+2x-4y+1=0,求下列各式的最大值和最小值:(1)y/(x-4) (2)2x-y
实数x,y满足x^2+y^2+2x-4y+1=0,求下列各式的最大值和最小值 (1)y/(x-4) ;(2)2x-y
实数xy满足x^2+y^2+2x-4y+1=0,求下列各式的最大最小值
已知实数x y满足x²+y²+2x-4y+1=0 求下列最大值和最小值,(1)y/x-4 (2)2x
与圆有关的最值问题 已知实数x y满足方程x^2+y^2-4x+1=0 求x-y的最大值 最小值.
已知实数x,y满足方程x^2+y^2-4x+1=0,(1)求,Y/x的最大值和最小值 (2)求y-x
如果实数X,Y,满足X^2+Y^2-4X+1= 0,求Y/x的最大值,Y-X的最小值.
实数XY满足X*X+Y*Y+2X-4Y+1=0,求Y/(X-4)的最大值和最小值及根号下X*X+Y*Y+2X+1的最大值
已知实数x,y满足方程x^2+y^2-4x-2y+1=0.求x^2+y^2+x+y的最大值和最小值.