作业帮 > 数学 > 作业

曲线X²+Y²+X-6Y+3=0 上两点P Q满足(1)关于直线RX-Y+4=0对称(2)O为坐标原

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 11:46:25
曲线X²+Y²+X-6Y+3=0 上两点P Q满足(1)关于直线RX-Y+4=0对称(2)O为坐标原点,且OP⊥OQ,求直
设P(x1,y1),Q为(x2,y2),
两点P Q满足(1)关于直线RX-Y+4=0对称,则 (y1-y2)/(x1-x2)=-1/R
且点((x1+x2)/2,(y1+y2)/2)必在直线RX-Y+4=0上
则x1^2+y1^2+x1-6y1+3=0
x2^2+y2^2+x2-6y2+3=0
两式相减,得(x1-x2)(x1+x2)+(y1-y2)(y1+y2)+(x1-x2)-6(y1-y2)=0
两边同除以x1-x2,得(x1+x2)+(y1+y2)*(-1/R)+1+6/R=0
即R(x1+x2)/2-(y1+y2)/2+R/2+3=0
所以R/2+3=4,得R=2
所以直线为2x-y+4=0