高二定积分问题!急!1、计算曲线y=x^2-2x+3与直线y=x+3所围成的面积.2、求曲线y^2=2x与直线y=x-4
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 21:59:57
高二定积分问题!急!
1、计算曲线y=x^2-2x+3与直线y=x+3所围成的面积.
2、求曲线y^2=2x与直线y=x-4所围成图形的面积
我要的是答案和过程我看看做得对不对
1、计算曲线y=x^2-2x+3与直线y=x+3所围成的面积.
2、求曲线y^2=2x与直线y=x-4所围成图形的面积
我要的是答案和过程我看看做得对不对
1、计算曲线y=x^2-2x+3与直线y=x+3所围成的面积.
y = x^2 - 2x + 3 = (x-1)^2 + 2
y最小值为2
将 x 轴向上平移2个单位 y 变化 y + 2,则 两个函数化为
y = (x-1)^2
y = x + 1
求二者交点
(x+1) = (x-1)^2
x^2 - 3x = 0
x1 = 0
x2 = 3
所求面积
S = 从 x = 0 到 x =3 的定积分 ∫(x+3)dx -∫(x-1)^2 dx
= (1/2)(x+3)^2 - (1/3)(x-1)^3
= [(1/2)(3+3)^2 - (1/3)(3-1)^3 ] - [(1/2)(0+3)^2 - (1/3)(0-1)^3]
= 18 - 8/3 - 9/2 - 1/3
= 21/2
求曲线y^2=2x与直线y=x-4所围成图形的面积
求交点
y^2 = 2(y+4)
y^2 - 2y - 8 = 0
(y-4)(y+2) = 0
y1 = -2
y2 = 4
画图,可以看出,这次需要对y做积分(而不是对x)
x = y^2 /2
x = y+4
所求面积
S = 从 y = -2 到 y =4 的定积分
∫(y+4)dy -∫y^2 /2 dy
= (1/2)(y+4)^2 - (1/6)y^3
= (1/2)[(6+4)^2 - (-2+4)^2] - (1/6)[4^3 - (-2)^3]
= (1/2)[100 - 4] - (1/6)[64 + 8]
= 48 - 12
= 36
如果和你做的有不一样,请指出来一起探讨哦
(另外,第一题不需要平移x轴的,但结果相同)
y = x^2 - 2x + 3 = (x-1)^2 + 2
y最小值为2
将 x 轴向上平移2个单位 y 变化 y + 2,则 两个函数化为
y = (x-1)^2
y = x + 1
求二者交点
(x+1) = (x-1)^2
x^2 - 3x = 0
x1 = 0
x2 = 3
所求面积
S = 从 x = 0 到 x =3 的定积分 ∫(x+3)dx -∫(x-1)^2 dx
= (1/2)(x+3)^2 - (1/3)(x-1)^3
= [(1/2)(3+3)^2 - (1/3)(3-1)^3 ] - [(1/2)(0+3)^2 - (1/3)(0-1)^3]
= 18 - 8/3 - 9/2 - 1/3
= 21/2
求曲线y^2=2x与直线y=x-4所围成图形的面积
求交点
y^2 = 2(y+4)
y^2 - 2y - 8 = 0
(y-4)(y+2) = 0
y1 = -2
y2 = 4
画图,可以看出,这次需要对y做积分(而不是对x)
x = y^2 /2
x = y+4
所求面积
S = 从 y = -2 到 y =4 的定积分
∫(y+4)dy -∫y^2 /2 dy
= (1/2)(y+4)^2 - (1/6)y^3
= (1/2)[(6+4)^2 - (-2+4)^2] - (1/6)[4^3 - (-2)^3]
= (1/2)[100 - 4] - (1/6)[64 + 8]
= 48 - 12
= 36
如果和你做的有不一样,请指出来一起探讨哦
(另外,第一题不需要平移x轴的,但结果相同)
高二定积分问题!急!1、计算曲线y=x^2-2x+3与直线y=x+3所围成的面积.2、求曲线y^2=2x与直线y=x-4
高数定积分:求曲线y=3-x平方 与直线 y=2x 所围成图形的面积.
曲线Y=X^2-6X+13与直线Y=X+3所围成的区域面积,*****不用积分做
定积分求直线X=O,X=2,Y=0,与曲线Y=X^2所围成的曲边梯形的面积
求曲线y=-x²+2与直线y=-x所围成的图形的面积?
求曲线y²=x与直线y=x-2所围成封闭图形的面积
求曲线y=x2与直线y=2x+3所围成图形的面积.
求直线x=1,x=2,y=0与曲线y=x^3所围成的曲边梯形的面积.
高数定积分求面积下面的几题用定积分求平面的面积,3Q,全部分献上!1)抛物线y=√x与直线y=x所围的图形.2)曲线y=
一题用积分求面积求由曲线y=x^3 与直线y=2x所围成图形的面积.答案是∫|x^3-2x| (上下限是负根号2到正根号
求曲线y=x^3与直线x=-1,x=2及x轴所围成的面积
求曲线y=x^2,直线y=x,y=3x围成的图形的面积.