作业帮 > 数学 > 作业

设A是n阶是对称矩阵,并且A^2=A.证明存在正交矩阵C,使

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 00:16:17
设A是n阶是对称矩阵,并且A^2=A.证明存在正交矩阵C,使
C^-1AC=C^TAC=diag(1.1000.0)
证明:
A为实对称矩阵,则币可以对角化,
令Aa=xa则
A^2=A
x^2a^2=xa
x(x-1)a=0
a≠0,x=0,1
则A矩阵的特征值只能为0,1
所以r(A)=r(Λ)=特征值非0的个数
所以必存在可逆矩阵T使得
T^(-1)AT=diag(Er,0)
再问: 所以r(A)=r(Λ)=特征值非0的个数
所以必存在可逆矩阵T使得
T^(-1)AT=diag(Er,0)
这不明白,为什么就必存在了啊?再详细点么