已知a,b,c属于R+且a+b+c=1求证a+1/a) +(b+1/b) +(c+1/c) 大于等于100/3
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 08:33:43
已知a,b,c属于R+且a+b+c=1求证a+1/a) +(b+1/b) +(c+1/c) 大于等于100/3
已知a,b,c属于R+,按算术平均数≥几何平均数,有
1/3(a+b+c)≥3次根号下(abc)又因为a+b+c=1 即得1/27≥ abc,故1/abc≥ 27
同理,又有 1/3(1/a+1/b+1/c)≥ 3次根号下(1/abc)得1/a+1/b+1/c≥3x 3次根号下(1/abc)
将上述两式结合考虑可得 1/a+1/b+1/c≥9
所以 (a+1/a) +(b+1/b) +(c+1/c)=a+b+c+(1/a+1/b+1/c)≥ 1+9=10
上述解答已经超过10天了,为什么你还不能搞懂呢?
今天再补充一下,举两个特例说明原题有误.
1,设a= b= c= 1/3 则满足条件.这时有1/3+1/3+1/3=1
(a+1/a) +(b+1/b) +(c+1/c)=a+b+c+(1/a+1/b+1/c)=1/3+1/3+1/3+3+3+3=10
2,若a=1/2,b=1/6,c=1/3这时有1/2+1/6+1/3=1
(a+1/a) +(b+1/b) +(c+1/c)=a+b+c+(1/a+1/b+1/c)=1/2+1/6+1/3+2+6+3=12>10
100/3是多少 超过33了.
1/3(a+b+c)≥3次根号下(abc)又因为a+b+c=1 即得1/27≥ abc,故1/abc≥ 27
同理,又有 1/3(1/a+1/b+1/c)≥ 3次根号下(1/abc)得1/a+1/b+1/c≥3x 3次根号下(1/abc)
将上述两式结合考虑可得 1/a+1/b+1/c≥9
所以 (a+1/a) +(b+1/b) +(c+1/c)=a+b+c+(1/a+1/b+1/c)≥ 1+9=10
上述解答已经超过10天了,为什么你还不能搞懂呢?
今天再补充一下,举两个特例说明原题有误.
1,设a= b= c= 1/3 则满足条件.这时有1/3+1/3+1/3=1
(a+1/a) +(b+1/b) +(c+1/c)=a+b+c+(1/a+1/b+1/c)=1/3+1/3+1/3+3+3+3=10
2,若a=1/2,b=1/6,c=1/3这时有1/2+1/6+1/3=1
(a+1/a) +(b+1/b) +(c+1/c)=a+b+c+(1/a+1/b+1/c)=1/2+1/6+1/3+2+6+3=12>10
100/3是多少 超过33了.
已知a,b,c属于R+且a+b+c=1求证a+1/a) +(b+1/b) +(c+1/c) 大于等于100/3
已知a,b,c属于R+,且a+b+c=1,求证:a的平方+b的平方+c的平方大于或等于1/3.
a,b,c属于正实数,已知a/(1+a)+b/(1+b)+c/(1+c)=1,求证:a+b+c大于等于3/2
已知a,b,c R且a+b+c=1,求证a^2+b^2+c^2大于等于3/1
a,b,c,属于正实数,且a+b+c=1求证(1+a)(1+b)(1+c)大于等于8(1-a)(1-b)(1-c)
已知a,b,c属于R*,且a+b+c=1,求证1/(a+b)+1/(b+c)+1/(c+a)大于等于9/2 用均值不等式
已知a,b,c属于正实数,且a+b+c=1求证a加a分之一乘以b+b分之一大于等于25/4
已知a,b,c属于正实数,且a+b+c=1,求证:1/a+1/b+1/c大于等于9
已知a,b,c属于R,a,b,c 互不相等且abc=1,求证:根a+根b+根c《1/a+1/b+1/c
已知a,b,c属于R+,且a+b+c=1,求证4a^2/(1-b)+4b^2/(1-c)+4c^2
均值不等式问题,已知a,b,c属于R,且a/(b+c)=b/(a+c)-c/(a+b),证明b/(a+c)≥(√17-1
已知a b c属于0到正无穷大 且a+b+c=1 求证a方+b方+c方大于3分之1