设ψ(cx-az,cy-bz)=0,其中ψ(u,v)具有连续偏导数,求a*(α^2z/αxαy)+b*(αz/αy)
设ψ(cx-az,cy-bz)=0,其中ψ(u,v)具有连续偏导数,求a*(α^2z/αxαy)+b*(αz/αy)
偏导数证明题设t(u,v)具有连续偏导数.证明:由方程t(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a
设Φ(u,v)具有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(эz/эx)
设Φ(u,v)有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(∂
设f(cx-ay,cy-bz)=0,其中f有连续偏导数,证明a*(偏z比偏x)+b*(偏z比偏y)=c
已知a(y-z)+b(z-x)+c(x-y)=0求证(cy-bz)/y-z=(az-cx)/z-x=(bx-ay)/x-
高数 设函数Z=Z(x,y)由方程D(cx-az,cy-bz)=0所确定.
设z=z(x,y)是由方程f(x-az,y-bz)=0所定义的隐函数,其中f(u,v)可微,求对y和对x的偏导数
已知:(ay-bx)²+(bz-cy)²+(cx-az)²=0.求证:x/a+y/b+z/
设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay
设z=x^3 f(xy,y/x),其中f具有二阶连续偏导数,求az/ax.
yz/(bz+cy)=xz/(cx+az)=xy/(ay+bx)=(x^2+y^2+z^2)/(a^2+b^2+c^2)