作业帮 > 数学 > 作业

设长方形的长为a,宽为b(a>b),面积为S1,以此长方形周长相等的正方形的面积为S2,则A.S1

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 04:59:12
设长方形的长为a,宽为b(a>b),面积为S1,以此长方形周长相等的正方形的面积为S2,则A.S1
由题意,S1=ab,
长方形周长为:C1=2(a+b)
则正方形连长为:l=C1/4=(a+b)/2
所以正方形面积为:S2=l^2=[(a+b)/2]^2=(a^2+2ab+b^2)/4
S2-S1=(a^2+2ab+b^2)/4-ab=(a^2-2ab+b^2)/4=[(a-b)^2]/4
由于a不等于b,所以:S2-S1=[(a-b)^2]/4>0
所以:S2>S1