作业帮 > 数学 > 作业

设a>0,且a不等于1,f(x)=a^x+a^-x,g(x)=a^x-a^-x,f(x)*f(y)=8,g(x)+g(y

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 14:50:33
设a>0,且a不等于1,f(x)=a^x+a^-x,g(x)=a^x-a^-x,f(x)*f(y)=8,g(x)+g(y)=4,(1)求[g()]
设a>0,且a不等于1,f(x)=a^x+a^-x,g(x)=a^x-a^-x,f(x)*f(y)=8,g(x)+g(y)=4,(1)求[g(x)]^2-[f(x)]^2,(2)求f(x+y)/f(x-y),(3)求a^x及a^y
√是根号
(1)[g(x)]^2-[f(x)]^2=[g(x)+f(x)]-[g(x)-f(x)]=2f(x)
因为f(x)*f(y)=8,所以f(x)*f(x)=8,f(x)=8^(1/2),带入上式=2*8^(1/2)=4√2
(2)f(x+y)/f(x-y)=f(x+x)/f(x-x)=f(2x)/f(0)
f(x)=a^x+a^-x,所以f(x)^2=(a^x+a^-x)^2=a^2x+a^-2x+2=f(2x)+2
所以f(2x)=6,f(0)=a^0+a^-0=2,f(2x)/f(0)=6/2=3