作业帮 > 数学 > 作业

三角形ABC在平面α内,点P在α外,PC⊥α,且∠BPA=90 ,为什么∠BCA是锐角 急

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 10:02:43
三角形ABC在平面α内,点P在α外,PC⊥α,且∠BPA=90 ,为什么∠BCA是锐角 急
不可能为锐角 一定为钝角!
设PA=X PB=Y 因为∠BPA=90 所以三角形BPA为直角三角形
所以AB=PA+PB=根号(X^2+Y^2)
因为PC⊥α 所以 PC⊥AC,PC⊥BC
所以三角形PCA PCB 为直角三角形
设角PAC PBC分别为a b
所以AC=Xcosa BC=Ycosb
在三角形ABC中cos角ACB=(AC^2+BC^2-AB^2)/2AC·AB
我们讨论AC^2+BC^2-AB^2的正负情况
(Xcosa)^2+(Ycosb)^2-(X^2+Y^2)
明显cosa cosb不可能等于1 如果等于1则P在α上
所以Xcosa)^2+(Ycosb)^2〈 X^2+Y^2
即AC^2+BC^2-AB^2为负数 则cos角ACB为钝角