{an}是首项a1=-10,公差d1=2的等差数列,{bn}是首项b1=-1/2,公差d2=1/2的等差数列,向量OA=
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 16:40:43
{an}是首项a1=-10,公差d1=2的等差数列,{bn}是首项b1=-1/2,公差d2=1/2的等差数列,向量OA=(-1,1)
为了避免用数学归纳法,假设:3≤k≤n,即k是3至n中的任意自然数
则:OP(k)-OP(2)=akOA+bkOB-a2OA-b2OB=(ak-a2)OA+(bk-b2)OB
=(k-2)d1OA+(k-2)d2OB=2(k-2)OA+(1/2)(k-2)OB=(k-2)(2OA+OB/2)=(k-2)(-3/2,5/2)
OP(k)-OP(1)=akOA+bkOB-a1OA-b1OB=(ak-a1)OA+(bk-b1)OB
=(k-1)d1OA+(k-1)d2OB=2(k-1)OA+(1/2)(k-1)OB=(k-1)(2OA+OB/2)=(k-1)(-3/2,5/2)
可以看出,对于任意给定的满足3≤k≤n的k值,OP(k)-OP(2)=((k-2)/(k-1))(OP(k)-OP(1))
即:P1,P2,...,Pn共线
OP(k)=akOA+bkOB=(a1+(k-1)d1)OA+(b1+(k-1)d2)OB
=(2k-12)OA+(k/2-1)OB=(2k-12)(-1,1)+(k/2-1)(1,1)=(11-3k/2,5k/2-13)
即:11-3k/2>0,5k/2-13>0,即:k26/5,即:k=6或7
则:OP(k)-OP(2)=akOA+bkOB-a2OA-b2OB=(ak-a2)OA+(bk-b2)OB
=(k-2)d1OA+(k-2)d2OB=2(k-2)OA+(1/2)(k-2)OB=(k-2)(2OA+OB/2)=(k-2)(-3/2,5/2)
OP(k)-OP(1)=akOA+bkOB-a1OA-b1OB=(ak-a1)OA+(bk-b1)OB
=(k-1)d1OA+(k-1)d2OB=2(k-1)OA+(1/2)(k-1)OB=(k-1)(2OA+OB/2)=(k-1)(-3/2,5/2)
可以看出,对于任意给定的满足3≤k≤n的k值,OP(k)-OP(2)=((k-2)/(k-1))(OP(k)-OP(1))
即:P1,P2,...,Pn共线
OP(k)=akOA+bkOB=(a1+(k-1)d1)OA+(b1+(k-1)d2)OB
=(2k-12)OA+(k/2-1)OB=(2k-12)(-1,1)+(k/2-1)(1,1)=(11-3k/2,5k/2-13)
即:11-3k/2>0,5k/2-13>0,即:k26/5,即:k=6或7
{an}是首项a1=-10,公差d1=2的等差数列,{bn}是首项b1=-1/2,公差d2=1/2的等差数列,向量OA=
已知等差数列{an}的首项a1=2,公差d1=5,等差数列{bn}的首项b1=-2,公差d2=-8,则数列{an+bn}
无穷等差数列{an}的首项an的首项a1=93,公差d1=-7,无穷等差数列{bn}的首项b1=17,公差d2=12,
已知分别以d1和d2为公差的等差数列an和bn满足a1=18 ,b14=36
已知数列an的奇数项是公差d1的等差数列,偶数项是公差为d2的等差数列 Sn是前n项和,a1=1,a2=2
已知数列an的奇数项是公差d1的等差数列,偶数项是公差为d2的等差数列Sn是前n项和,a1=1,a2=2
已知{an}是首项为1,公差为1的等差数列,若数列{bn}满足b1=1,bn+1=bn+2^an
已知{an}的奇数项是公差为d1的等差数列,偶数项是公差为d2,sn是数列{an}的前n项的和,a1=1,a2=2
已知数列{an}是等差数列,且a1=1,公差为2,数列{bn}为等比数列且b1=a1,b2(a2-a1)=b1
已知数列{an}是等差数列,a1=1,公差为2,又已知数列{bn}为等比数列,且b1=a1,b2(a2-a1)=b1,求
已知数列{an},{bn}都是公差为1的等差数列,其首项分别为a1,b1,且a1+b1=5,a1,b1∈N*,设c
【紧急--高一数学】已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an