是否存在常数abc使得等式1^2-2^2+3^2-4^2+...+[(-1)^n-1]*n^2=[(-1)^n-1]*(
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 06:11:03
是否存在常数abc使得等式1^2-2^2+3^2-4^2+...+[(-1)^n-1]*n^2=[(-1)^n-1]*(an^2+bn+c)
是否存在常数abc使得等式1^2-2^2+3^2-4^2+...+(-1)^n-1*n^2=(-1)^n-1*(an^2+bn+c)对一切正整数n都成立.并证明你的结论.
是否存在常数abc使得等式1^2-2^2+3^2-4^2+...+(-1)^n-1*n^2=(-1)^n-1*(an^2+bn+c)对一切正整数n都成立.并证明你的结论.
假设存在abc使得等式成立
当n=1时,1=a+b+c
当n=2时,1-4=-3=4a+2b+c
当n=3时,1-4+9=6=9a+3b+c
根据三个式子求出a=8 b=-28 c=21
则原式为1^2-2^2+3^2-4^2+...+(-1)^n-1*n^2=(-1)^n-1*(8n^2-28n+21)
再用数学归纳法证明一下就可以了
不是很难,就是满足一般的一定满足特殊的,用特殊的几个数带进去算一下求出值再证明就可以了
当n=1时,1=a+b+c
当n=2时,1-4=-3=4a+2b+c
当n=3时,1-4+9=6=9a+3b+c
根据三个式子求出a=8 b=-28 c=21
则原式为1^2-2^2+3^2-4^2+...+(-1)^n-1*n^2=(-1)^n-1*(8n^2-28n+21)
再用数学归纳法证明一下就可以了
不是很难,就是满足一般的一定满足特殊的,用特殊的几个数带进去算一下求出值再证明就可以了
是否存在常数abc,使得等式1*2^2+2*3^2+.+n(n+1)^n=n(n+1)(an^2+bn+c)/12成立?
是否存在常数abc使得等式1^2-2^2+3^2-4^2+...+[(-1)^n-1]*n^2=[(-1)^n-1]*(
是否存在常数C,使得等式1x4+2x7+3x10+.+n(3n+1)=n(n+c)(n+2c+1)对任意正整数n恒成立?
设an=1+1/2+1/3+...+1/n是否存在关于n的整式g(n),使得等式a1+a2+...+a(n-1)=g(n
是否存在常数a、b、c,使等式1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=an^4+bn
是否存在常数a、b,使得等式:1^2/1*3+2^2/3*5+...+n^2/(2n-1)(2n+1)=(an^2+n)
是否存在正整数m,n,使得m(m+2)=n(n+1)?
yi ge 是否存在常数a,b使等式1^2/(1*3)+2^2/(3*5)+.+n^2/(2n-1)*(2n+1)=(a
是否存在常数A,B使等式:1(N^2-1^2)+2(N^2-2^2)+3(N^2-3^2)+……+N(N^2-N^2)=
是否存在常数A,B,C,使等式1*2的平方加2*3的平方一直加到N*(N加1)的平方=
设f(n)=1+1/2+1/3+...+1/n,是否存在关于自然数N的函数g(n),使等式f(1)+f(2)+.+f(n
f(n)=1+1/2+1/3+...1/n,是否存在关于自然数n的函数g(n),使等式f(1)+f(2)+...+f(n