椭圆x^2/36+y^2/9=1有两个动点p,q. E(3,0),EP垂直于EQ,求EP乘以QP的最小值
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 03:33:15
椭圆x^2/36+y^2/9=1有两个动点p,q. E(3,0),EP垂直于EQ,求EP乘以QP的最小值
向量EP·向量QP
=向量EP·(向量QE+向量EP)
=向量EP·向量QE +向量EP·向量EP
∵EP⊥EQ
∴=|向量EP|²
到此需要参数方程
设P=(6cosa,3sina)
|向量EP|²
=(6cosa-3)²+(3sina)²
=9(4cos²a-4cosa+1+sin²a)
=9(1+3cos²a-4cosa+1)
=9(3cos²a-4cosa+2)
内部函数3cos²a-4cosa对称轴是cosa=2/3(能取到)
∴最小值
=9*(3*4/9-8/3+2)
=9*(2-4/3)
=9*2/3
=6
向量EP·向量QP最小值=6
如果你认可我的回答,请点击左下角的“采纳为满意答案”,祝学习进步!
=向量EP·(向量QE+向量EP)
=向量EP·向量QE +向量EP·向量EP
∵EP⊥EQ
∴=|向量EP|²
到此需要参数方程
设P=(6cosa,3sina)
|向量EP|²
=(6cosa-3)²+(3sina)²
=9(4cos²a-4cosa+1+sin²a)
=9(1+3cos²a-4cosa+1)
=9(3cos²a-4cosa+2)
内部函数3cos²a-4cosa对称轴是cosa=2/3(能取到)
∴最小值
=9*(3*4/9-8/3+2)
=9*(2-4/3)
=9*2/3
=6
向量EP·向量QP最小值=6
如果你认可我的回答,请点击左下角的“采纳为满意答案”,祝学习进步!
椭圆x^2/36+y^2/9=1有两个动点p,q. E(3,0),EP垂直于EQ,求EP乘以QP的最小值
已知点E(3,0),PQ是x^2/36+y^2/9=1上的两个动点,且PE垂直EQ,求向量EP乘以向量QP的范围
椭圆X2/36+Y2/9=1上有两动点PQ,E(3,0),EP垂直于EQ,则向量EP点乘向量QP的最小值为多少?
椭圆X2/36+Y2/9=1上有俩动点PQ,E(3,0),EP垂直于EQ,则向量EP点乘向量QP的最小值为多少?答案是6
设P是椭圆X^2/a^2+y^2短轴上的一个端点,Q为椭圆上的一个动点,求|QP|的最大值
正比例函数y=kx的图像经过点a(-3,2),q(m,-m-1)且过q点作qp垂直于x轴,垂足为p.求三角形OPQ的面积
在三角形ABC中,BC边得垂直平分线DE于角BAC的平分线AE交于点E,过E作EP处置AB与P,EQ垂直AC的延长线与Q
高中的一道椭圆题椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)上有2点P和QP,Q在x轴上的射影分别是椭圆的左
已知P点在圆(x-1)^2+y^2=1上移动,Q点在椭圆x^2/9+y^2/4=1上移动,求|PQ|的最小值.
1 在菱行ABCD中∠A=110,e,f分别是AB和BC的中点,EP垂直CD于点P,求∠fpc
已知抛物线x^2=y上有一定点A(-1,1)和两个动点Q、P,当PA垂直于PQ时,点Q的横坐标的取值范围是?
在三角形ABC中,BC边的垂直平分线DE与角BAC的角平分线AE交于点E,过E作EP垂直AB于P,EQ垂直AC的延长线于