如图,已知△ABC是等腰直角三角形,∠C=90°,点M、N分别是边AC和BC的中点,点D在射线BM上,且BD=2BM.点
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 05:27:06
如图,已知△ABC是等腰直角三角形,∠C=90°,点M、N分别是边AC和BC的中点,点D在射线BM上,且BD=2BM.点E在射线NA上,且NE=2NA,求证:BD⊥DE.
证明:取AD中点F,连接EF,
∵△ABC是等腰直角三角形,点M、N分别是边AC和BC的中点,
∴BC=AC,AC=2CM,BC=2CN,
∴CM=CN,
在△BCM和△ACN中,
BC=AC
∠C=∠C
CM=CN,
∴△BCM≌△ACN(SAS),
∴AN=BM,∠CBM=∠CAN,
∵NE=2AN,
∴AE=AN,
∵AD∥BC,
∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC,
在△EAF和△ANC中,
AE=AN
∠EAF=∠ANC
AF=NC,
∴△EAF≌△ANC(SAS),
∴∠NAC=∠AEF,∠C=∠AFE=90°,
∴∠AFE=∠DFE=90°,
∵F为AD中点,
∴AF=DF,
在△AFE和△DFE中,
AF=DF
∠AFE=∠DFE
EF=EF,
∴△AFE≌△DFE(SAS),
∴∠EAD=∠EDA=∠ANC,
∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,
∴BD⊥DE.
如图,已知△ABC是等腰直角三角形,∠C=90°,点M、N分别是边AC和BC的中点,点D在射线BM上,且BD=2BM.点
如图,在等腰直角三角形ABC中,∠C=90°,AC=BC,点D,E分别是在BC,AC上,且BD=CE,M是AB的中点.
三道几何题.今晚要,1、三角形ABC是等腰直角三角形,∠C=90度,点MN分别是边ACBC中点,点D在射线BM上,BD=
如图,在Rt△ABC中,∠C=90°,BC=AC点D,E分别在BC和AC上,且BD=CE,M是AB的中点,△MDE是等腰
如图,已知:△ABC中,∠A=90°,D是AC上的一点,DE⊥BC,垂足为E,点M,N分别在BA,BC上,且BM=BN,
如图 在等腰Rt△ABC中 ∠C=90°,AE=BC,点D,E分别在BC和AC上,且BD=CE,M是AB的中点,则△MD
如图,已知:三角形ABC中,∠A=90度,D是AC上的一点,DE垂直BC,垂足为点E,点M,N分别在BA,BC上,且BM
如图,已知△abc中,∠a=90°,d是ac上一点,de⊥bc,垂足为e,点m,n分别在ba,bc上,且bm=bn,dm
已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM,点D在AB上,连接D
如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点(1)如图,求证:①BM=DM;②
如图7,在Rt△ABC中∠B=90°,AB=BC=8,点M在BC上,且BM=2,点N是AC上一动点,则BN+MN的最小值
在等腰Rt△ABC中,∠C=90°,AC=BC,点D,E分别在BC和AC上,且BD=CE,M是AB的中点,则△MDE是等