◆◆◆两道极限题1、已知对于任意正整数n,都有a1+a2+…+an=n^2,则lim n→∞(1/(a2-1)+1/(a
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 21:39:16
◆◆◆两道极限题
1、已知对于任意正整数n,都有a1+a2+…+an=n^2,则lim n→∞(1/(a2-1)+1/(a3-1)+…+1/(an-1))=?
2、a、b∈R,且|a|
一楼的错了吧。算出来1/(a2-1)+1/(a3-1)+…+1/(an-1)的通项是1/(2n-2) (n≥2)
1、已知对于任意正整数n,都有a1+a2+…+an=n^2,则lim n→∞(1/(a2-1)+1/(a3-1)+…+1/(an-1))=?
2、a、b∈R,且|a|
一楼的错了吧。算出来1/(a2-1)+1/(a3-1)+…+1/(an-1)的通项是1/(2n-2) (n≥2)
(1)因为a1+a2+…+an=n^2,所以当n=1时,有a1=1; 当n=2时可求得a2=4-1=3; 所以可猜想
an=2n-1(为奇数列),验算可知它的前n项和恰为n^2,所以猜想正确.那么
lim n→∞(1/(a2-1)+1/(a3-1)+…+1/(an-1))
=lim n→∞(1/2+1/4+…+1/2n)
=lim n→∞(1/2)*(1+1/2+…+1/n);而
lim n→∞(1+1/2+…+1/n)是无穷大,不收敛!
(2) 数列的通项是
(1+b+b^2+…+b^(n-1))a^(n-1)
=(1-b^n)*a^(n-1)/(1-b)
=[a^(n-1)-a^(n-1)*b^n]/(1-b);
其中“[]”中为两个等比数列的通项,首项分别为1和b;公比分别为a和ab,又|a|
an=2n-1(为奇数列),验算可知它的前n项和恰为n^2,所以猜想正确.那么
lim n→∞(1/(a2-1)+1/(a3-1)+…+1/(an-1))
=lim n→∞(1/2+1/4+…+1/2n)
=lim n→∞(1/2)*(1+1/2+…+1/n);而
lim n→∞(1+1/2+…+1/n)是无穷大,不收敛!
(2) 数列的通项是
(1+b+b^2+…+b^(n-1))a^(n-1)
=(1-b^n)*a^(n-1)/(1-b)
=[a^(n-1)-a^(n-1)*b^n]/(1-b);
其中“[]”中为两个等比数列的通项,首项分别为1和b;公比分别为a和ab,又|a|
◆◆◆两道极限题1、已知对于任意正整数n,都有a1+a2+…+an=n^2,则lim n→∞(1/(a2-1)+1/(a
已知对于任意正整数n,都有a1+a2+…+an=n3,则1a
对于任意正整数n,都有a1+a2+..+an=n^3 则lim(1/(a2-1)+1/(a3-1)+.1(an-1) )
已知两等差数列an.bn,且a1+a2+.+an/b1+b2+.+bn=3n+1/4n+3,对于任意正整数n都成立,求a
在数列{an}中已知a1=0,a2=6,且对于任意正整数n都有a(n+2)=5a(n+1)-6a(n)
证明两个简单极限1、lim n→∞ n/[(n!)^(1/n)]=e2、an→A 求证:lim n→∞ (a1+2a2+
在数列{an}中,已知对任意正整数n,有a1+a2+...+an=2的n次方-1,那么a1的平方+a2的平方+...+a
在数列{an}中,a1=2010,且对任意正整数,都有a(n+2)=a(n+1)-an,则a2+a3+a4+……+a20
数列 {an}中,对于任意正整数n,均有a(n+3)=an成立,且a1=1,a2=2,a3=3,则a2010=
问高二数列题1.等比数列中,已知对任意正整数n,a1+a2+a3+……+an=2的n次方-1,则a1²+a2&
对于任意的正整数n,都有a1+a2+a3...an=nx nx n 求1/a2-1+(1/a3-1)+.1/a100-1
设函数f(x)=1/x,数列an满足:a1=a不等于0,且对于任意的正整数n都有an+1=f(an^2),则a1*a2…