作业帮 > 数学 > 作业

如图所示,设M是三角形ABC的重心,过M的直线分别交边AB、AC于P、Q两点,且AP/PB=mAQ/QC=n则1/m+1

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 08:21:53
如图所示,设M是三角形ABC的重心,过M的直线分别交边AB、AC于P、Q两点,且AP/PB=mAQ/QC=n则1/m+1/n=?

我觉得是等于1的,但是不知道怎么来的,哪位大侠用平行线等分线段定理来做啊,只求辅助线做法,如果有过程加分

过B作BE∥MA交MP的延长线于E,过C作CF∥MA交MQ的延长线于F,延长AM交BC于D.
∵M是△ABC的重心,∴AM=2MD、BD=CD.
∵BE∥MA,∴△APM∽△BPE,∴AM/BE=AP/PB=m,∴1/m=BE/AM.······①
∵CF∥MA,∴△AQM∽△CQF,∴AM/CF=AQ/QC=n,∴1/n=CF/AM.······②
①+②,得:1/m+1/n=(BE+CF)/AM.······③
∵BE∥MA、CF∥MA,∴BE∥DM∥CF,又BD=CD,∴BE+CF=2MD=AM.······④
由③、④,得:1/m+1/n=1.